Thuật toán về tìm đường đi và chu trình Hamilton cài đặt bằng C/C++

Thuật toán về tìm đường đi và chu trình Hamilton cài đặt bằng C/C++

Để xem lý thuyết đồ thị với các định nghĩa về đường đi, chu trình, đồ thị liên thông bạn có thể xem ở đây.

>>> Lý thuyết đồ thị - Đường đi - Chu trình - Đồ thị liên thông

Với đồ thị Euler, chúng ta quan tâm tới việc duyệt các cạnh của đồ thị mỗi cạnh đúng một lần, thì trong mục này, chúng ta xét đến một bài toán tương tự nhưng chỉ khác nhau là ta chỉ quan tâm tới các đỉnh của đồ thị, mỗi đỉnh đúng một lần. Sự thay đổi này tưởng như không đáng kể, nhưng thực tếcó nhiều sự khác biệt trong khi giải quyết bài toán.

Định nghĩa. Đường đi qua tất cả các đỉnh của đồ thị mỗi đỉnh đúng một lần được gọi là đường đi Hamilton. Chu trình bắt đầu tại một đỉnh v nào đó qua tất cả các đỉnh còn lại mỗi đỉnh đúng một lần sau đó quay trở lại v được gọi là chu trình Hamilton. Đồ thị được gọi là đồ thị Hamilton nếu nó chứa chu trình Hamilton. Đồ thị chứa đường đi Hamilton được gọi là đồ thị nửa Hamilton.

Như vậy, một đồ thị Hamilton bao giờ cũng là đồ thị nửa Hamilton nhưng điều ngược lại không luôn luôn đúng. Ví dụ sau sẽ minh họa cho nhận xét này.

Ví dụ. Đồ thị hamilton G1, G3, nửa Hamilton G2.

Đường đi và chu trình Hamilton

Đường đi và chu trình Hamilton

Cho đến nay, việc tìm ra một tiêu chuẩn để nhận biết đồ thị Hamilton vẫn còn mở, mặc dù đây là vấn đề trung tâm của lý thuyết đồ thị. Hơn thế nữa, cho đến nay cũng vẫn chưa có thuật toán hiệu quả để kiểm tra một đồ thị có phải là đồ thị Hamilton hay không.

Để liệt kê tất cả các chu trình Hamilton của đồ thị, chúng ta có thể sử dụng thuật toán sau:

void Hamilton( int k) { 

 /* Liệt kê các chu trình Hamilton của đồ thị bằng cách phát triển dãy đỉnh 

 (X[1], X[2],..., X[k-1] ) của đồ thị G = (V, E) */

 for y∈Ke(X[k-1]) { 

  if (k==n+1) and (y == v0) then 

   Ghinhan(X[1], X[2],..., X[n], v0); 

  else { 

   X[k]=y; chuaxet[y] = false; 

   Hamilton(k+1); 

   chuaxet[y] = true; 

  } 

 } 

}

Chương trình chính được thể hiện như sau:

for (v∈V ) chuaxet[v] = true; /*thiết lập trạng thái các đỉnh*/

 X[1] = v0; (*v0 là một đỉnh nào đó của đồ thị*) 

 chuaxet[v0] = false; 

 Hamilton(2);

Cây tìm kiếm chu trình Hamilton thể hiện thuật toán trên được mô tả như sau:

Thuật toán tìm chu trình Hamition

Thuật toán tìm chu trình Hamition

Chương trình liệt kê các chu trình Hamilton được thể hiện như sau:

#include<iostream>

#include<conio.h>

using namespace std;

#define MAX 50 

#define TRUE 1 

#define FALSE  0 

int A[MAX][MAX];//ma trận liền kề.

int C[MAX], B[MAX]; 

int n;//số đỉnh của đồ thị.

int d;//đếm số lượng chu trình hamilton.

void Init(void){ 

 freopen("CCHMTON.IN", "r",stdin); 

 cin>>n; 

 //nhập ma trận kề

 for(int i=1; i<=n; i++){ 

  for(int j=1; j<=n; j++){ 

   cin>>A[i][j]; 

  } 

 } 

 for (int i=1; i<=n;i++) 

  C[i]=0; 

} 

void Result(void){ 

 cout<<"Chu trinh Hamilton: ";

 for(int i=n; i>=0; i--) 

  cout<<B[i]<<" "; 

 d++; 

 cout<<endl;

} 

void Hamilton(int *B, int *C, int i){ 

 int j, k; 

 for(j=1; j<=n; j++){ 

  if(A[B[i-1]][j]==1 && C[j]==0){ 

   B[i]=j; C[j]=1; 

   if(i<n) Hamilton(B, C, i+1); 

   else

    if(B[i]==B[0]) Result(); 

   C[j]=0; 

  } 

 } 

} 

void main(void){ 

 B[0]=1; 

 int i=1;

 d=0;

 Init(); 

 Hamilton(B,C,i); 

 if(d==0) 

  cout<<"Khong co chu trinh Hamilton"; 

 getch(); 

} 

Ma trận liền kề của đồ thị:

5

0 1 0 1 0

1 0 1 0 1

0 1 0 1 1

1 0 1 0 1

0 1 1 1 0

Output của chương trình:

Chu trinh Hamilton: 1 4 5 3 2 1

Chu trinh Hamilton: 1 4 3 5 2 1

Chu trinh Hamilton: 1 2 5 3 4 1

Chu trinh Hamilton: 1 2 3 5 4 1

Chương trình duyệt tất cả đường đi Hamilton như sau:

#include<iostream>

#include<conio.h>

using namespace std;

#define MAX 50 

#define TRUE 1 

#define FALSE  0 

int A[MAX][MAX];//ma trận kề của đồ thị.

int C[MAX], B[MAX];//mảng đánh dấu.

int n;//số đỉnh của đồ thị.

int d;//đếm số đường đi Hamilton.

void Init(void){ 

 freopen("DDHMTON.IN", "r",stdin); 

 cin>>n; 

 //nhập ma trận liền kề.

 for(int i=1; i<=n; i++){ 

  for(int j=1; j<=n; j++){ 

   cin>>A[i][j]; 

  } 

 } 

 for (int i=1; i<=n;i++) 

  C[i]=0; 

} 

void Result(void){ 

 cout<<"Duong di Hamilton: ";

 for(int i=n; i>0; i--) 

  cout<<B[i]<<" "; 

 d++; 

 cout<<endl;

} 

void Hamilton(int *B, int *C, int i){ 

 int j, k; 

 for(j=1; j<=n; j++){ 

  if(A[B[i-1]][j]==1 && C[j]==0){ 

   B[i]=j; C[j]=1; 

   if(i<n) Hamilton(B, C, i+1); 

   else Result(); 

   C[j]=0; 

  } 

 } 

} 

void main(void){ 

 B[0]=1; 

 int i=1;

 d = 0;

 Init(); 

 Hamilton(B,C,i); 

 if(d==0) 

  cout<<"Khong co duong di Hamilton"; 

 getch(); 

}

}

 

Bạn thấy bài viết này như thế nào?: 
Average: 4.4 (16 votes)
Ảnh của Tommy Tran

Tommy owner Express Magazine

Drupal Developer having 9+ year experience, implementation and having strong knowledge of technical specifications, workflow development. Ability to perform effectively and efficiently in team and individually. Always enthusiastic and interseted to study new technologies

  • Skype ID: tthanhthuy

Advertisement

 

jobsora

Dich vu khu trung tphcm

Dich vu diet chuot tphcm

Dich vu diet con trung

Quảng Cáo Bài Viết

 
Sáng chế mới của Apple: MacBook lai máy tính bảng

Sáng chế mới của Apple: MacBook lai máy tính bảng

MacBook sẽ có khả năng xoay màn hình thành máy tính bảng, lại có thêm ăng-ten đem đến khả năng của chiếc điện thoại.

Bản đồ các quốc gia bị ảnh hưởng bởi botnet Necurs.

Microsoft đánh sập mạng botnet điều hành bởi Evil Corp có trụ sở ở Nga

Microsoft và các đối tác tại 35 quốc gia đánh sập mạng botnet spam và phát tán mã độc Necurs lây nhiễm khoảng chín triệu máy tính toàn cầu.

Apple sẽ lùi ngày phát hành iTunes 11

Apple sẽ lùi ngày phát hành iTunes 11

Hôm thứ Ba (30/10), Apple cho biết iTunes 11 sẽ bị dời ngày phát hành với lí do có sự chậm trễ bất ngờ và mong muốn dịch vụ được "hoàn thiện thêm".

Tomdesgin.vn

 

Drupal Services