

Scrum – A Pocket Guide

Other publications by Van Haren Publishing

Van Haren Publishing (VHP) specializes in titles on Best Practices, methods and standards
within four domains:

- IT and IT Management
- Architecture (Enterprise and IT)
- Business Management and
- Project Management

Van Haren Publishing offers a wide collection of whitepapers, templates, free e-books, trainer
materials etc. in the Van Haren Publishing Knowledge Base: www.vanharen.net for more
details.

Van Haren Publishing is also publishing on behalf of leading organizations and companies:
ASLBiSL Foundation, BRMI, CA, Centre Henri Tudor, Gaming Works, IACCM, IAOP,
Innovation Value Institute, IPMA-NL, ITSqc, NAF, Ngi/NGN, PMI-NL, PON, The Open
Group, The SOX Institute.

Topics are (per domain):

IT and IT Management
ABC of ICT
ASL®

CATS CM®

CMMI®

COBIT®

e-CF
ISO 20000
ISO 27001/27002
ISPL
IT-CMFTM

IT Service CMM
ITIL®

MOF
MSF
SABSA

Architecture
(Enterprise and IT)
ArchiMate®

GEA®

Novius Architectuur Methode
TOGAF®

Business Management
BABOK ® Guide
BiSL®

BRMBOKTM

BTF
EFQM
eSCM
IACCM
ISA-95
ISO 9000/9001
OPBOK
SAP
SixSigma
SOX
SqEME®

Project, Program and Risk
Management
A4-Projectmanagement
DSDM/Atern
ICB / NCB
ISO 21500
MINCE®

M_o_R®

MSP®

P3O®

PMBOK ® Guide
PRINCE2®

Scrum
A Pocket Guide

Gunther Verheyen

Colophon
Title: Scrum – A Pocket Guide
Subtitle: A smart travel companion
Series: Best Practice
Author: Gunther Verheyen
Reviewers: Ken Schwaber (Scrum co-creator, Scrum.org)

 David Starr (Agile Craft sman, Microsoft)
 Ralph Jocham (Agile Professional,
eff ective agile)
 Patricia Kong (Director of Partners,
Scrum.org)

Text editor:
Publisher:

ISBN hard copy:
ISBN eBook:
Edition:

Steve Newton
 Van Haren Publishing, Zaltbommel,
www.vanharen.net
978 90 8753 720 3

 First edition, fi rst impression, October 2013
First edition, second impression, January 2014
First edition, third impression, June 2014
First edition, fourth impression, November 2015
First edition, fi ft h i mpression, November 2016

Layout and typesetting: CO2 Premedia, Amersfoort – NL
Copyright: © Van Haren Publishing, 2013

For any further enquiries about Van Haren Publishing, please send an
e-mail to: info@vanharen.net
Although this publication has been composed with most care, neither
Author nor Editor nor Publisher can accept any liability for damage caused
by possible errors and/or incompleteness in this publication.
No part of this publication may be reproduced in any form by print, photo
print, microfi lm or any other means without written permission by the
Publisher.

Foreword by Ken Schwaber

An outstanding accomplishment that simmers with intelligence.

Scrum – A Pocket Guide is an extraordinarily competent book.
Gunther has described everything about Scrum in well-formed,
clearly written descriptions that fl ow with insight, understanding, and
perception. Yet, you are never struck by these attributes. You simply
benefi t from them, later thinking, “Th at was really, really helpful.
I found what I needed to know, readily understood what I wanted, and
wasn’t bothered by irrelevancies.”

I have struggled to write this foreword. I feel the foreword should
be as well-written as the book it describes. In this case, that is hard.
Read Gunther’s book. Read it in part, or read it in whole. You will be
satisfi ed.

Scrum is simple, but complete and competent in addressing complex
problems. Gunther’s pocket guide is complete and competent in
addressing understanding a simple framework for addressing complex
problems, Scrum.

Ken, August 2013

Preface

Th e use of Agile methods continues to grow traction and Scrum is
the most widely adopted method for Agile soft ware development. Th e
general level of interest in Scrum is therefore considerable.

Transforming an organization’s development approach to Scrum
represents quite a challenge. Scrum is not a cookbook ‘process’ with
detailed and exhaustive prescriptions for every imaginable situation.
Scrum is a framework of principles, roles and rules that thrive on the
people doing Scrum. Th e true potential of Scrum lies in the discovery
and emergence of practices, tools and techniques and in optimizing
them for each organization’s specifi c context. Scrum is very much
about behavior, much more than it is about process.

Th e benefi ts an organization realizes with Scrum depend on the will
to remove barriers, think across boxes and embark on a journey of
discovery.

Th e journey starts by playing Scrum. Th is requires knowledge of the
rules of Scrum. Th is book describes these. Th is book shows how Scrum
implements the Agile mindset, what the rules of the game of Scrum
are, and how these rules leave room for a variety of tactics to play

8 Scrum – A Pocket Guide

the game. Th e introduction of all essentials of Scrum and the most
common tactics for Scrum makes this book a worthwhile read for
people, teams, managers and change agents, whether they are already
doing Scrum or want to embark on the journey of Scrum.

Ten years ago I started my journey, my path of Agility via Scrum. It
has inevitably been a cobblestone path. On my journey I have used
Scrum with plenty of teams, in various projects, and at diff erent
organizations. I have worked with both large and small enterprises
and have coached teams as well as executive management. I was
in the fortunate position of then moving to Scrum.org. It’s where I
shepherd the ‘Professional’ series of Scrum trainings, courseware and
assessments.

I thank Ken Schwaber, David Starr, Ralph Jocham, and Patricia Kong
for reviewing early versions of this book and improving it with much
appreciated feedback.

I thank all at Van Haren Publishing for their trust and confi dence, and
for giving me the chance to express my views on Scrum with this book.

I thank my colleagues at Scrum.org for our daily collaboration, the
positive action and the energy, and especially Ken Schwaber for our
exquisite partnership.

Enjoy reading, and... keep Scrumming.

Gunther, June 2013

Reviews

Th is Scrum Pocket Guide is outstanding. It is well organized, well
written, and the content is excellent. Th is should be the de facto
standard handout for all looking for a complete, yet clear overview
of Scrum.

(Ken Schwaber, Scrum co-creator, Scrum.org)

Gunther has expertly packaged the right no-nonsense guidance for
teams seeking agility, without a drop of hyperbole. Th is is the book
about agility with Scrum I wish I had written.

(David Starr, Agile Craft sman, Microsoft)

During my many Scrum training activities I oft en get asked: “For
Scrum, what is the one book to read?” In the past the answer wasn’t
straight forward, but now it is! Th e Scrum Pocket Guide is the one
book to read when starting with Scrum. It is a concise, yet complete
and passionate reference about Scrum.

(Ralph Jocham, Agile Professional, eff ective agile.)

‘Th e house of Scrum is a warm house. It’s a house where people are
WELCOME.’ Gunther’s passion for Scrum and its players is evident
in his work and in each chapter of this book. He explains the Agile
paradigm, lays out the Scrum framework and then discusses the
‘future state of Scrum.’ Intimately, in about 100 pages.

(Patricia M. Kong, Director of Partners, Scrum.org)

Contents

1 THE AGILE PARADIGM . 13

1.1 To shift or not to shift . 13
1.2 Th e origins of Agile . 18
1.3 Defi nition of Agile . 19
1.4 Th e iterative-incremental continuum22
1.5 Agility can’t be planned .26
1.6 Combining Agile and Lean .28

2 SCRUM . 37

2.1 Th e house of Scrum . 37
2.2 Scrum, what’s in a name? .38
2.3 Is that a gorilla I see over there? . 41
2.4 Framework, not methodology .44
2.5 Playing the game .46
2.6 Core principles of Scrum . 61
2.7 Th e Scrum values . 71

3 TACTICS FOR A PURPOSE . 77

3.1 Visualizing progress . 78
3.2 Th e Daily Scrum questions . 79
3.3 Product Backlog refi nement .80

12 Scrum – A Pocket Guide

3.4 User Stories . 81
3.5 Planning Poker . 83
3.6 Sprint length . 83
3.7 Scaling Scrum . 85

4 THE FUTURE STATE OF SCRUM . 91

4.1 Yes, we do Scrum. And… . 91
4.2 Th e power of the possible product . 93
4.3 Th e upstream adoption of Scrum . 95

Annex A: Scrum vocabulary . 101
Annex B: References .105
About the author .109

1 The Agile paradigm

1.1 TO SHIFT OR NOT TO SHIFT
Th e soft ware industry was for a long time dominated by a paradigm of
industrial views and beliefs (fi gure 1.1). Th is was in fact a copy-paste
of old manufacturing routines and theories. An essential element in
this landscape of knowledge, views and practices was the Taylorist1

conviction that ‘workers’ can’t be trusted to undertake intelligent and
creative work. Th ey are expected to only carry out executable tasks.
Th erefore their work must be prepared, designed and planned by
more senior staff . Furthermore, hierarchical supervisors must still
vigilantly oversee the execution of these carefully prepared tasks.

Methodology

Plan

Resource management utilization

Project Manager

Direct

Money rewards

Tasks

Control

Figure 1.1 The industrial paradigm

14 Scrum – A Pocket Guide

Quality is assured by admitting the good and rejecting the bad batches
of outputs. Monetary rewards are used to stimulate desired behavior.
Unwanted behavior is punished. It’s like carrots and sticks.

Th e serious fl aws of this paradigm in soft ware development are known
and well documented. In particular, the Chaos reports of the Standish
Group have over and over again revealed the low success rates of
tradit ional soft ware development. Th e latest of these reports is dated
2011 (Standish, 2011). Many shortcomings and errors resulting from
the application of the industrial paradigm in soft ware development are
well beyond reasonable levels of tolerance. Th e unfortunate response
seems to have been to lower the expectations. It was accepted that
only 10-20% of soft ware projects would be successful. Success in the
industrial paradigm is made up of the combination of on time, within
budget and including all scope. Although these criteria for success
can be disputed, it is the paradigm’s promise. It became accepted that
quality is low, and that over 50% of features of traditionally delivered
soft ware applications are never used (Standish, 2002).

Although it is not widely and consciously admitted, the industrial
paradigm did put the soft ware industry in a serious crisis. Many tried
to overcome this crisis by fortifying the industrial approach. More
plans were created, more phases scheduled, more designs made, more
work was done upfront, hoping for the actual work to be undertaken
to be executed more eff ectively. Th e exhaustiveness of the upfront
work was increased. Th e core idea remained that the ‘workers’ needed
to be directed with even more detailed instructions. Supervision was
increased and intensifi ed.

And still, little improved. Many fl aws, defects and low quality had to
be tolerated.

151 The Agile paradigm

It took some time, but inevitably new ideas and insights started
forming following the observation of the signifi cant anomalies of the
industrial paradigm. Th e seeds of a new world view were already sown
in the 1990’s. But it was in 2001 that these resulted in the formal
naming of ‘Agile’, a turning-point in the history of soft ware
development. A new paradigm for the soft ware industry was born
(fi gure 1.2); a paradigm that thrives upon heuristics and creativity, and
restoring the respect for the creative nature of the work and the
intelligence of the ‘workers’ in soft ware development.

Discovery

Flow

Intrinsic motivation

People practices

Leadership Mastery

Skills

Planning

Value

Figure 1.2 The Agile paradigm

Th e soft ware industry has good reasons to move fast to the new
para digm; the existing fl aws are signifi cant, widely known and the
presence of soft ware in society grows exponentially, making it a
critical aspect of our modern world. However, by defi nition, a shift to
a new paradigm takes time. And the old paradigm seems to have deep
roots. An industrial approach to soft ware development even continues
to be taught and promoted as the most appropriate one.

16 Scrum – A Pocket Guide

Many say that Agile is too radical and they, therefore, propagate a
gradual introduction of Agile practices into the existing, traditional
process. However, there is reason to be very skeptical about a gradual
evolution, a slow progression from the old to the new paradigm, from
waterfall to Agile.

Th e chances are quite high that a gradual evolution will never go
beyond the surface, will not do more than just scratch that surface.
New names will be installed, new terms and new practices will be
imposed, but the fundamental thinking and behavior of people and
organizations will remain the same. Essential fl aws will remain
untouched; especially the disrespect for people that will lead to
the continued treatment of creative, intelligent people as mindless
‘workers’.

Th e preservation of the traditional foundation will keep existing
data, metrics and standards in place, and the new paradigm will be
measured against these old standards. Diff erent paradigms by their
nature consist of fundamentally diff erent concepts and ideas, oft en
even mutually exclusive. In general, no meaningful comparison
between the industrial and the Agile paradigms is possible. It requires
the honesty to accept the serious fl aws of the old ways, and for
leader ship and entrepreneurship to embrace the new ways, thereby
abandoning the old thinking.

A gradual shift is factually a status-quo situation that keeps the industrial

paradigm intact.

Th ere is overwhelming evidence that the old paradigm doesn’t
work. But much of the evidence on Agile was anecdotal, personal or
relatively minor. Th e Chaos report of 2011 by the Standish Group
marks a turning point. Extensive research was done in comparing

171 The Agile paradigm

traditional projects with projects that used Agile methods. Th e report
shows that an Agile approach to soft ware development results in a
much higher yield, even against the old expectations that soft ware
must be delivered on time, on budget and with all the promised scope.
Th e report shows that the Agile projects were three times as successful,
and there were three times fewer failed Agile projects compared with
traditional projects. It is clear that against the right set of expectations,
with a focus on active customer collaboration and frequent delivery of
value, the new paradigm would be performing even better.

Yet, Agile is a choice, not a must. It is one way to improve the soft ware
industry. Research shows it is more successful.

Scrum helps.

Th e distinct rules of Scrum help in getting a grip on the new
paradigm. Th e small set of prescriptions, as described in the following
chapter, allows immediate action and results in a more fruitful
absorption of the new paradigm. Scrum is a tangible way to adopt the
Agile paradigm. Via Scrum, people do develop new ways of working;
through discovery, experimentation-based learning and collaboration.
Th ey enter this new state of being, this state of agility; a state of
constant change, evolution and improvement.

Nevertheless, despite its practicality, experience shows that
adopting Scrum oft en represents a giant leap. Th is may be because
of uncertainty, letting go of old certainties even if they prove not to
be very reliable. It may be because of the time that it takes to make
a substantial shift . It may be because of the determination and hard
work that is required.

18 Scrum – A Pocket Guide

1.2 THE ORIGINS OF AGILE
Despite the domination of the plan-driven, industrial views, an
evolutionary approach to soft ware development is not new. Craig Larman
has extensively described the historical predecessors of Agile in his book
‘Agile & Iterative Development, A Manager’s Guide’ (Larman, 2004).

But the offi cial label ‘Agile’ dates from early 2001, when 17 soft ware
development leaders gathered at the Snowbird ski resort in Utah.
Th ey discussed their views on soft ware development in times when
the failing waterfall approaches were replaced by heavy-weight RUP
implementations, which did not in fact lead to better results than
the traditional processes. Th ese development leaders were following
diff erent paths and methods, each being a distinct implementation of
the new paradigm; Scrum, eXtreme Programming, Adaptive Soft ware
Development, Crystal, Feature Driven Development, DSDM, etc.

Th e gathering resulted in assigning the label ‘Agile’ to the common
principles, beliefs and thinking of these leaders and their
methods. Th ey were published as the ‘Manifesto for Agile Soft ware
Development’ (Beck, et.al., 2001). (See fi gure 1.3).

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Figure 1.3 The text of the Manifesto for Agile Software Development

191 The Agile paradigm

I oft en overhear the desire “to do Agile”. And all too oft en it is the
desire for a magical solution, another silver bullet process that solves
all problems. It makes me state that “Agile does not exist”. Agile is
not one fi xed process, method or practice. Agile is the collection
of principles that the methods for Agile soft ware development
have in common. Agile refers to the mindset, the convictions and
the preferences expressed in the Manifesto for Agile Soft ware
Development.

Th e manifesto does help to grasp the ideas underpinning Agile. If
you use it as a source to gain a deeper understanding of Agile, then I
strongly advise looking at the 12 principles, see: http://agilemanifesto.
org/principles.html

1.3 DEFINITION OF AGILE
I prefer to describe ‘Agile’ in terms of the following key characteristics
that are common to the portfolio of Agile methods:

■ People driven;
■ Facilitation;
■ Iterative-incremental process;
■ Measuring success;
■ Change.

1.3.1 People driven
Agile soft ware development is not driven by a predictive plan
describing how to implement analyzed, designed and architected
requirements. Agile acknowledges that requirements cannot be
predicted in every possible detail in an upfront way.

20 Scrum – A Pocket Guide

Agile is not a process of handing over diff erent types of intermediate
deliverables to diff erent specialist departments, where each
department performs its specialized work in isolation.

Agile is driven by the continuous collaboration of people ranging
over all required departments; whether they are called business, IT,
marketing, sales, customer service, operations or management.

People are respected for their creativity, intelligence and self-
organizing capabilities. People are respected for their ability to
understand and resolve a problem without being overloaded with
too much ceremony and bureaucracy. A ceremonial overload only
replaces this collaborative thinking, innovation and accountability of
people with bureaucracy, paper results, handovers and administrative
excuses.

People are respected in the time they can spend on their work via the
idea of Sustainable Pace. Work is organized in such a way that the
tempo is sustainable, indefi nitely.

1.3.2 Facilitation
Agile replaces the traditional command-and-control mechanisms of
assigning individuals on a daily basis with executable micro-tasks and
totalitarian authorities for invasive control.

Agile teams are facilitated by servant-leadership. Boundaries and
a context for self-management exist, upon which teams are given
objectives and direction. Subtle control emerges from the boundaries.

1.3.3 Iterative-incremental process
Agile processes are not free-play approaches. Agile processes are
defi ned and they require high discipline.

211 The Agile paradigm

Products are created piece by piece (‘incremental’) with each piece
being made up of expansions, improvements and modifi cations. Th e
built pieces and the total product are frequently revisited (‘iterative’)
to assure overall integrity.

Agile requires explicit attention from all players on quality and
excellence. Agile replaces the idea that these can simply be poured into
documents and paper descriptions.

1.3.4 Measuring success
Progress in soft ware development cannot be measured and guaranteed
on the basis of mere compliance with predictive plans and milestones,
documents, handovers, signatures, approvals or other ceremonial
obligations as is the case in the industrial paradigm.

Agile makes it explicit that success and progress in soft ware
development can only be determined by frequently inspecting working
soft ware and the actual value it holds for the people who will have to
use it.

It is a natural part of soft ware development that the people having to
use the soft ware can never be sure on the usability and usefulness until
they actually get their hands on it. No paper documentation or virtual
process can replace this.

Agile recognizes no business versus IT discord. Th e two are needed
for success, from the perspective of creating both useable and useful
soft ware products.

1.3.5 Change
Even when requirements and implementations are predicted in an
upfront way, they are prone to change. Markets and competitors

22 Scrum – A Pocket Guide

evolve, users can only know what they want when they get to use it,
enterprise strategies change, to name just a few.

Contrary to a predictive process, change is not excluded from the
Agile process nor expelled to the ceremonial outskirts of development.
New insights, evolving opinions and changed priorities form the
living heart of Agile. Agile thrives upon emergence, the emergence
of requirements, plans, ideas, architectures and designs. Change is
not disruptive because it forms a natural part of the process. Agile
encourages change as a source of innovation and improvement.

What we used to know as ‘change’ has evaporated.

1.4 THE ITERATIVE-INCREMENTAL CONTINUUM
Every Agile process slices time into time-boxed iterations, periods
having a fi xed start and end date. Th ere are many advantages to the
technique of time-boxing, with focus being an important one. Th is
time management technique also ensures regular checks so that the
lessons learned can be incorporated from one iteration to the next.
Th e core objective of each iteration is to create builds of valuable,
working soft ware at the end of it in order to present this and enable
early learning.

Agile soft ware development is driven by business and business
opportunities. All work is reorganized to respond to and enable that
business opportunities can be capitalized on.

231 The Agile paradigm

n iterationsHigh

Ri
sk

 v
s.

 v
al

ue

Time

Low

Analyse Code

Design Test/Integrate

Value

Risk

Working Increments

Figure 1.4 Agile value delivery

‘Value’ is the answer to business opportunities and the overall
measure of progress and success. Value is an internal assumption
within the organization until the soft ware is actually released to the
marketplace. Releasing soft ware on the marketplace is the only way
to validate this assumption. Releasing soft ware on the marketplace
regularly is the only way to adapt to the feedback and appreciation of
the marketplace. Th is is done in subsequent evolutions of the soft ware.
Value is continuously increased across iterations and risk is controlled
by consecutively producing working increments based upon defi ned
engineering standards (fi gure 1.4).

‘Risk’ also relates to the business perspective. Bear in mind that
typically, in an IT context, risk is defi ned as something technical
(Will the system perform? Is the system scalable?). But a technical
perspective on risk oft en ignores the fact that the ultimate goal of
soft ware development is to provide greater satisfaction to end-users
and customers, to ensure that the soft ware products are useful.

24 Scrum – A Pocket Guide

Soft ware being usable from a technical perspective is just the
beginning.

Th e soft ware development process should address the risk of not being
able to capitalize on unforeseen and previously unknown market
opportunities, of not releasing the soft ware product fast enough, of
being subject to customer dissatisfaction e.g. by releasing untested
soft ware, the risk of releasing features that are not what users expect or
appreciate, the risk of lagging behind with regards to the competition.

Th e Agile development process is organized in such a way so as to
mitigate that risk. High-value needs are answered fi rst. Soft ware
products, versions and releases are released quickly and frequently.
Th ey satisfy existing needs as well as include mind-blowing innovative
functions. Th ey get users to pay for the soft ware and optimize the
stakeholders’ return. Th ey are of high quality in order to minimize
maintenance and support.

Agile understands the core purpose of the ‘normal’ IT activities (in
fi gure 1.4 high-level represented as Analysis, Design, Coding and
Testing/Integration), but breaks the sequential organization of these.
To produce shippable soft ware with the right dynamism and get more
benefi t out of them these activities are structurally re-organized. Th e
goal is to enable fl exibility and speed instead of blocking them. In
Agile all disciplines are performed in a non-linear, incremental way,
in parallel and on a daily basis, by cross-skilled teams with continuous
collaboration and negotiation over emergent ideas, techniques and
practices.

Th e goal of such an integrated, cross-functional approach is to build
in quality and to prevent defects, rather than attempt to establish

251 The Agile paradigm

quality by a bug hunting approach in a post-development phase. It is
imperative to turn the desire to release regularly into the ability to do
so. Missing quality cannot be added to a fi nished product. And delays
and budgets tend to grow well out of hand when a lack of quality is
identifi ed aft er the actual creation process has been fi nished.

Aiming at the real and lasting benefi ts of Agile soft ware development
requires going beyond the borders of the IT departments. Th e way
that Agile not only embraces and incorporates change but even
encourages it, is likely to challenge large parts of an organization.
But it’s more than a must; it’s an opportunity to gain leadership. An
entire organization will prosper from adopting the Agile mindset of
short cycles, frequent results and evolutionary adaptations. Th e Agile
views and approach allow organizations and departments to fi nally
stop trying to predict the unpredictable. Agile practices incorporate
dealing with answers, solutions and competing ideas that emerge while
building soft ware.

It might take some time to experience the fact that the continuous
learning innate in Agile actually increases control amidst turbulent
enterprise, business and market circumstances. It might take some
time to shift management focus away from judgments over the past,
e.g. via actuals and time registrations. It might take some time to get
confi dence out of optimizing and releasing business value through
incremental outcomes of the Agile soft ware development process.
It might take some time to accept that agility takes time, to accept
that agility need not be analyzed, designed and planned before a
transformation can take off .

26 Scrum – A Pocket Guide

1.5 AGILITY CAN’T BE PLANNED
Agility is the state envisioned by moving to Agile processes. Agility
is the state of high responsiveness, speed and adaptiveness, while
controlling risks. It serves to better deal with the unpredictability so
common to the work of soft ware development and to the markets that
organizations operate within.

Agility has no purpose if the aforementioned characteristics of
responsiveness, speed and adaptiveness don’t stretch to the relationship
of the organization and its markets, communities and consumers.
Th e adoption of Agile processes is an important foundation for this
enterprise agility. From that adoption new processes emerge, together
with a new organizational culture of learning, improving and constant
adaptation, and restored respect for people.

Th ere are some basic truths that are fundamental to setting the right
expectations for the transformation to a state of agility. Introducing
Agile methods without accepting these essential truths closes the
door to increased agility rather than turning it into a gateway of
opportunities:
■ Agility can’t be planned;
■ Agility can’t be dictated;
■ Agility has no end-state.

A time-planned way to introduce Agile methods introduces unfavorable
expectations. Introducing Agile methods is about introducing a new
paradigm, and will cause signifi cant organizational change. Existing
procedures, departments and functions will be impacted. Such change
processes are highly complex and therefore not predictable, even less
predictable than creating and sustaining great soft ware products. In
a transformation towards an Agile way of working, there is no way of
predicting what change needs will be encountered at what point in time,

271 The Agile paradigm

how these will be dealt with and what the exact outcome will be in order
to control next steps. Th ere is no way of predicting the pace at which the
change will spread and take root.

Agility in itself is much more than following a new process. It is
about behavior, it is about cultural change. A decision to move to
Agile is a decision to leave the old ways behind. It is not only about
accepting but also celebrating the fact that agility is living the art of
the possible. It requires the courage, honesty and conviction of acting
in the moment, acting upon the reality that is exposed by iterative-
incremental progress information. Agility is about doing the best
possible at every possible moment, constrained by the means we have
and facing up to the constraints that arise. A time-planned way for an
Agile transformation ignores the essence of Agile, that of dealing with
complexity via well-considered steps of experimentation and learning.
Time-plans simply extend the old thinking. In general a plan will even
slow down the transformation process, because serious delays and
waiting times are incorporated.

Time-plans create the illusion of deadlines and a fi nal end-state.
Agility has no end-state. Agility is a state of continuous improvement,
a state in which each status quo is challenged, by our own will or by
external turbulence.

Living the art of the possible engages people and accelerates a
transformation as it shapes the future, thrives upon the future and
what the future might bring. It’s a bright future for organizations that
have the vision, the determination and the dedication.

Th ese basic truths must be in the hearts and minds of every person
managing, guiding, facilitating or leading a transformation based on
the Agile mindset. And even then, it takes time for agility to settle in

28 Scrum – A Pocket Guide

the hearts and minds of the people impacted by the transformation.
Aft er all, people have been instructed in the wrong behavior of the
industrial paradigm for 15 to 20 years, or more.

1.6 COMBINING AGILE AND LEAN
For Lean, much like for Agile, it is vital to be aware that it’s a set of
thinking tools, a collection of interwoven principles that educate,
motivate, value and coach people to continuously optimize their work
and the way in which they work. Th e principles of Lean form the levers
of a system that people can use to create better products faster, yet in
a sustainable and respectful way. It’s a system that rewards people for
doing the best they can with the means and tools they are given in
their actual situation.

Th ere is not one defi nite, full-blown, one-size-fi ts-all, unifi ed Lean
process, for soft ware development nor for manufacturing, with
 predefi ned and prescribed phases, roles, defi nitions, artifacts,
deliverables, etc. A Lean process should be designed upon its principles
and thinking, and be constantly tuned to the actual situation. It’s
about adaptiveness. Th e online ‘Lean Primer’ document of Bas Vodde
and Craig Larman does an excellent job of introducing the roots of Lean
along with its principles and thinking (Larman & Vodde, 2009).

1.6.1 Major aspects of Lean

People
Th e cornerstone of any system that claims to be Lean are the people.
And ‘people’ refers to every possible actor in the whole ecosystem of
the Lean product development/build system: customers, workers,
teams, suppliers, and managers; internal and external.

291 The Agile paradigm

All people contribute in their own way and by their own means to
building or delivering a product. Th ey collaborate across skills to
avoid handovers, delays and waiting time. Th ey autonomously take
decisions. Th ey have room to focus on knowledge gathering and
constant learning. Managers act as teachers with a go see commitment
of work-fl oor presence. Th ey promote the Lean thinking system; help
people understand how to refl ect on their work, their work results and
how to build better products. Th e whole system embodies the spirit
of Kaizen, the attitude of continuously thinking about the process,
the product and possible improvements. Every member of the whole
system can ‘stop the line’2 if a problem occurs. Th e root of the problem
will be identifi ed and countermeasures will be proposed or installed.

Everyone involved in the value chain works in an integrated way.
Relationships with suppliers and external partners are not based
upon the traditional approach of large volume purchases, big
negotiation rounds and pressuring one another. It’s all about building

Goal

Principles
Practices

Delivery

Build

Lean Thinking

PE
OP

LE

KA
IZ

EN

Figure 1.5 Lean principles

30 Scrum – A Pocket Guide

relationships on the sharing of profi t (and risk). Lean contracts
incorporate mutual growth.

Waste
When considering the subject of waste, let’s mention that avoiding
waste, via continuous improvement and small step optimizations, is
the preferred option. Furthermore, remember that ‘waste’ refers to
process steps, not to getting rid of people.

Obviously, no matter how much attention is paid to avoiding it,
waste can and will creep in. Th e Kaizen spirit drives all people to be
committed, aware and critical in their daily work. It’s a natural refl ex.

A practice to identify structural waste is Value Stream Mapping. All
steps and phases in the process of going from ‘idea’ to ‘cash’ are set out
on a timeline. Activities may be labeled as ‘valuable’ or as ‘non-value
adding’, but possibly also as necessary although not directly value-
adding. Th e Value Ratio can be calculated as the ratio of time spent on
value-adding activities versus wasteful activities. It’s a fi gure that may
serve as a baseline against which improvement can be measured. But,
as in all improvement activities, there is no defi nite end goal, no fi nal
state. Th e improvement itself is the goal.

Inventory, WIP and fl ow
Lean strives for continuity and fl ow. Overproduction of materials
disrupts fl ow and may delay the discovery and resolution of quality
issues. But it is also disrespectful as it forces people to do work
that may actually never be used. Inventory is costly and makes the
organization liable to waste.

Lean says to limit ‘Work in Progress’ (and costly inventory) by
producing only materials when there is a pull signal from the next

311 The Agile paradigm

steps in the process in a ‘Just in Time’ mode. A kanban is a physical
signal card for this function in manufacturing systems. A kanban is
attached to an inventory of parts. It is linked to a level of stock. New
parts are only produced when enough materials have been used and
the signal card appears.

1.6.2 Implementing Lean
Much like with Agile, many organizations struggle with Lean. And on
top of that, organizations struggle with the combination of Agile and
Lean.

In general, companies refer to organizational problems when
expressing a desire for ‘Lean’. If they want to become ‘Agile’ on the
other hand, they are most likely referring to problems with soft ware
development. However, neither Agile nor Lean off ers that one magical,
off -the-shelf (silver bullet) solution.

Unfortunately Lean is far too frequently assumed to be limited to
eliminate waste. Just picking out that one element from the toolbox
is already an undesirable over-focus on just one aspect, instead of
looking at the whole. It gets even worse when the principle itself is
broken, and when ‘elimination’ is applied to people and not as a means
to improve. Th e highly popular management sport of ‘cost cutting’
tends to twist this important Lean practice into designating people’s
work as an ‘overhead’, i.e. non-valuable. Th e underlying signal says
that the people who are doing that work are waste and ... disposable.

From that popular misconception and its all too limited perspective
on Lean, it is a long journey to build up an understanding that Lean
is primarily about respecting people in order to optimize value and
quality. Th at Lean is more about the context in which people can
prosper in order to perform, than about continuously over-stressing

32 Scrum – A Pocket Guide

the need for results and performance. It invokes the diffi cult exercise
of letting go of ‘command and control’, of big boss behavior, micro-
management, over-allocation and nano-assignments.

It is a long way from this misconception to an understanding of Lean
beyond the formal practices, an understanding of Lean as a thinking
context with no defi nite end state, with people continuously refl ecting
on their daily work and self-improving.

Agile can help.

Th ere are more than just a few similarities between Agile and Lean
that are worthwhile exploring. Some management or governance
philosophies should not be mixed up because this will result in a
blurry amalgam and the unique fl avor of the ingredients will get
lost in the mix, as will the benefi ts. But, as far as Agile and Lean are
concerned, I don’t only believe that Lean and Agile can be combined,
the combination of Lean management principles with Agile product
development thinking, as a total outcome, will actually result in a more
powerful mix.

Lean and Agile are truly blending philosophies. Lean thrives on a
powerful but typical mindset. Agile has distinct practices that not only
match the main Lean principles extremely well, but even form a very
tangible implementation of them for soft ware development purposes.

331 The Agile paradigm

1.6.3 The blending philosophies of Lean and Agile
I have published a more detailed paper on this subject with the same title,
‘Th e Blending Philosophies of Lean and Agile’ (Verheyen, 2011), which
can be found at www.scrum.org/Community/Community-Publications.
Here we will show just some of the clear strategies in Agile that align
it with Lean:
■ Potentially unused inventories: Detailed requirements, hard-coded

plans, designs, etc. form a liability in soft ware development, and
not an asset, because they represent potentially unused work.
Agile avoids producing these upfront in every possible detail. If
the potential point of implementation of identifi ed work is still
some time away, the chances are quite high that this will not be
implemented. Th e exact expectations may change in the meantime,
or experience from intermediate implementation and releases may
indicate better ways of implementing the distant requirement.
Only the upcoming, highest ordered work is detailed more fully,
as it is this that will be worked on next. And even then a team will
only pull in the amount of work they deem feasible for an iteration,
and start building it based on progressive learning and continuous
improvement, even on a daily base.

■ Partially done work: Work that is not completely fi nished, ‘almost
there, I just need a little more time’-type of work, is a known,
important type of waste in soft ware development. In an Agile
process the goal of each iteration is to produce a working piece of
product. No partial work is included in the soft ware at the end of
an iteration. Th e overall Kaizen thinking, and its explicit daily
Inspect & Adapt implementation in Agile, helps team in not taking
up new work while undone work remains in the iteration. Time-
boxing is a time-management technique that helps teams focus on
fi nishing work.

■ Feature usage: Research has shown that barely 20% of the features
included in a product built in a traditional way are regularly

34 Scrum – A Pocket Guide

used (Standish, 2002). Unused or under-used functions thus
represent an enormous waste of eff ort and budget, both in terms
of developing and maintaining them. Active collaboration
with people who know and represent the customer prevents the
production of un wanted or invaluable requirements, and helps
a team focus on a minimal set of features that may be released.
Th e focus on ‘wanted’ requirements saves not only development
budget, it also ensures that future maintenance and support costs
can be kept much lower. And the iterative-incremental process
allows teams to regularly adapt the product based upon an eff ective
appreciation of the delivered value and also capitalize on new value
expectations.

Agile has clear strategies for continuous improvement, thereby
leveraging the Kaizen spirit:
■ Th e work plan of an Agile team is checked daily and updated;
■ At the end of an iteration the soft ware that has been produced

is verifi ed to gather feedback, remarks, improvements and
enhancements;

■ Th e process, the way the teams work, collaborate, communicate
and undertake implementation, is verifi ed at its latest point via an
iteration retrospective.

Agile optimizes the whole by demanding that customers or their
proxies express and order work, and take an active part in the
development process for clarifi cation and functional trade-off s even
during implementation. All implementation skills are available within
a team to turn their ideas, options and requirements into working
soft ware in a single iteration.

Agile shortens cycle times by optimizing the value stream through the
prevention of traditional waiting activities like handovers and external

351 The Agile paradigm

decisions. Th ere are no macro handovers, i.e. handovers across
depart ments and organizations, which typically occur in a sequential
organization of work with large blocks of specialized work packages.
But there are also no micro handovers, i.e. handovers between
individuals and within a team, given the collective accountability of
the team.

In general, the strategies and principles of Agile are consistent with,
and even leveraging, all major Lean principles, as I’ve indicated in
fi gure 1.6.

Lean Agile
Respect for People Self-organizing Teams

Kaizen Inspect & adapt, short feedback cycles
Prevent/eliminate Waste No unused specs, architecture or infrastructure

Pull inventory (Kanban) Estimates refl ect team capacity
Visual management Information radiators

Built-in Quality Defi nition of Done, Engineering standards
Customer Value Active Business Collaboration

Optimizing the whole Whole Team Together (incl. stake holders)
Deliver fast Timeboxed iterations with working Increments

The manager-teacher The facilitating servant-leader

Figure 1.6 The consistency in principles of Lean and Agile

Notes
1 Frederick Taylor (1856-1915) was an American engineer

who is best known for his research into ways to optimize the
productivity, effi ciency and the cost of labor. He promoted
enforced standardization and the enforced adoption of
systematic methods and practices. Control lay exclusively with
management, with workers being there only to carry out the work
(Source: http://en.wikipedia.org/wiki/Frederick_Winslow_Taylor).

36 Scrum – A Pocket Guide

2 Th is refers to the Toyota car manufacturing origins of Lean, where
every person at the production line is entitled to stop the line when
problems, defects or a lack of quality are detected.

Scrum2
2.1 THE HOUSE OF SCRUM
Th e house of Scrum (fi gure 2.1) is a warm house. It’s a house where
people are W E L C O M E.

Goal

Principles

RolesRules

Increment

Build

Transparency

IN
SP

EC
T

AD
AP

T

Figure 2.1 The house of Scrum

In the house of Scrum people from diff erent backgrounds, in diff erent
roles, with diff erent skills, talents and personalities work, learn and

38 Scrum – A Pocket Guide

improve together. Th e house of Scrum is an inclusive house of warm,
open and collaborative relationships.

Th e house of Scrum knows no ‘versus’. Barriers are removed, instead
of being maintained or created. Th ere’s no business versus IT in the
house of Scrum, no team versus the world, no Product Owner versus
Development Team, no coding versus support, no testers versus
programmers, no my team versus your team, no Scrum Master
versus the organization. Th e house of Scrum off ers an open view
on the world. Th e house of Scrum is a great and energizing place
where product development prospers from the combined, creative
intelligence of self-organizing people.

Th e house of Scrum helps to stay away from rigid behavior. Its
inhabitants, their teams and the ecosystems in which they operate
show fl exibility to better deal with uncertainty, internal tensions and
external pressure on the ecosystem. Th ey probe, sense and adapt at all
levels; at the strategy and tactical levels, from requirements to plans to
objectives to markets to technology.

Scrum is an enabler for building soft ware products better and faster.
But, most of all, it restores energy and work pleasure for all of the
involved players; from those who create the products, to those who
have a stakeholder interest in the product being created, to those who
consume the product and its services, to all who co-create it with
opinions, feedback and appreciation.

2.2 SCRUM, WHAT’S IN A NAME?
Th e term ‘Scrum’ was fi rst used by Hirotaka Takeuchi and Ikujiro
Nonaka, two acknowledged management thinkers, in their ground-
breaking 1986 paper ‘Th e New New Product Development Game’
(Takeuchi & Nonaka, 1986). With the term ‘Scrum’ they referred

392 Scrum

to the game of rugby to stress the importance of teams and some
analogies between a team sport like rugby and being successful in the
game of new product development. Th e research described in their
paper showed that outstanding performance in the development of
new, complex products is achieved when teams, as small and self-
organizing units of people, are fed with objectives, not with tasks.
Th e best performing teams are those that are given direction within
which they have room to devise their own tactics on how to best head
towards their joint objective. Teams require autonomy to achieve
excellence.

Figure 2.2 A Scrum in the game of rugby

Jeff Sutherland and Ken Schwaber conceived the Scrum process for
Agile soft ware development in the early 90’s. Th ey presented Scrum for
the fi rst time in 1995 at the Oopsla1 conference in Austin, Texas (US)
(Schwaber, 1995; Sutherland, 1995).

Th ey inherited the name ‘Scrum’ from the paper by Takeuchi and
Nonaka. Th e Scrum framework for soft ware development implements
the principles described in this paper for developing and sustaining
complex soft ware products. If teams are only instructed to carry out
executable tasks and their capacity in hours is pre-fi lled with such
tasks, team members suff er from a narrowed mind. Th ey are restricted

… as in Rugby, the ball

gets passed within the

team as it moves as a

unit up the fi eld.

Takeuchi Nonaka

(1986).

The New New Product

Development Game

40 Scrum – A Pocket Guide

from looking and thinking beyond the prescriptions, even if reality
or experience shows that the prescribed solution is diffi cult to achieve
or is suboptimal. Th ey lose openness for better solutions, for solutions
that are not dictated and that are a better fi t to the actual demand
given change, proven fi ndings and current circumstances. Th eir only
focus is to deliver what was instructed without considering confl icting
ideas and options, without dealing with the natural form of instability
typical to product development and technological discovery. Th e
industrial mode to direct people as if they were robots impedes the
rise of the collective intelligence of a team, thereby limiting their work
results to mediocre levels.

We have already pointed out the remarkable similarities between Lean
and Agile in section 1.6. However, there is also a connection between
Scrum and Lean via ‘Th e New New Product Development Game’, and
the term ‘Scrum’.

Th e authors of the ‘Th e New New Product Development Game’ paper
are very familiar with, and are proponents of, Lean. Over the course
of their careers and assignments they have studied and described well-
known Lean companies. Yet they never use the term ‘Lean’.

In their paper, Takeuchi and Nonaka wanted to describe the pumping
heart of Lean, and called it ‘Scrum’, as a diff erentiator in terms of
complex product development. Th e viewpoint is that an organization
is unlikely to benefi t from any so-called ‘Lean’ practice for developing
complex products if this pumping heart is not present and only the
practices surrounding it are installed. Unfortunately this is the case
for many Lean implementations, so the authors preferred to stress the
need for the heart and soul of the system and take away the focus on
the surrounding management practices.

412 Scrum

So, they opted not to mention Lean, and focused instead on its engine,
i.e. Scrum.

Furthermore they confi rmed that ‘Lean’ had become synonymous
with the management practices of the Toyota Production System. For
this reason also, they barely talked of Lean.

‘Scrum should be at the heart of every implementation of Lean.’

Jeff Sutherland (Sutherland, 2011).

2.3 IS THAT A GORILLA I SEE OVER THERE?
Evolutionary practices for soft ware development have been around
for a long time (Larman, 2004). Th e Scrum process for Agile soft ware
development has been available and documented since 1995. Th e Agile
movement was formed in 2001. Th is new paradigm for the soft ware
industry has taken root and its adoption is increasing steadily.

A widely accepted model to assess and represent the degree of
adoption of a technological product or service is Geoff rey Moore’s
expanded version of the ‘Technology Adoption Life Cycle’ (TALC)
(Moore, 1999; Wiefels 2002). See fi gure 2.3.

Geoff rey Moore had observed the diff erence in the adoption pattern
for technology products or services representing a disruptive new
paradigm causing a discontinuity in innovation. Moore confi rmed
the general phases and audiences to be in line with the adoption of
products representing a continuous evolution. But aft er the phase
of Early Market Moore observed and added to the model a period of
stagnation. It is a period where adoption stalls. An unpredictable time
passes by before entering the next phase of adoption, the Bowling Alley.

42 Scrum – A Pocket Guide

And some products never even get out of this stand-still and simply
disappear. Moore called this period the Chasm.

During the highly turbulent phase of Bowling Alley a gorilla is formed,
a market leader. In the subsequent phases, until the disappearance of
the product off the market, it turns out that market leaders, in general,
are diffi cult to overthrow.

Early Market

Bo
wlin

g
Al

ley

Tornado Main Street

Assimilation

Technology
Enthusiasts

Visionaries

CH
AS

M

Pragmatists
(early majority)

Conservatives
(late majority)

Laggards

Vi
si

bi
lit

y
De

gr
ee

 o
f C

om
m

un
ity

 A
do

pt
io

n

Figure 2.3 The Technology Adoption Life Cycle

In addition to the use of Agile for the development of new, possibly
disruptive, technological products, Agile in itself is absolutely a new,
and clearly disruptive, paradigm on the technology market.

Th e years since the emergence of the fi rst Agile processes (avant la
lettre) and the offi cial establishment of the term ‘Agile’ in 2001 marked
the Early Market phase of Agile.

Around 2007-2008 there was a general consensus that Agile was
crossing the Chasm. Up to that point evidence on Agile was mostly
anecdotal and generally based on individual enterprise adoptions,
technology cases and personal storytelling. Th is is typical of the

432 Scrum

phases of the technology adoption life cycle in question. It is equally
typical that mostly enthusiasts and visionaries were attracted by it. But
once the Chasm was crossed, Agile also became attractive to a broader
audience, the audience of Early Pragmatists. Th ey typically look at
the business advantages of a less proven paradigm, and compare its
problem-solving capabilities to the existing paradigm. Yahoo! is an
important example of a large company transitioning to Agile, and
documenting their experiences in 2008 (Benefi eld, 2008).

In Q3 2009, Forrester Research and Dr. Dobb’s (Hammond & West,
2009) conducted a survey amongst IT professionals worldwide
including an investigation into the type of “methodology (that) most
closely refl ects the development process you are currently using”.
Perhaps surprisingly to a number of people, 36% of the participants
indicated that they were doing Agile, while only 13% confi rmed
to be following a waterfall process2. Th is was an important formal
confi rmation of the common perception that the use of Agile had
indeed gradually been overtaking the waterfall model.

In April 2012, Forrester Research (Giudice, 2011) published the results
of a survey on the global adoption of Agile for soft ware application
development noting that “the IT industry is (...) widely adopting Agile”
and that the adoption of Agile is not limited to small enterprises.
Large organizations form a substantial part of the companies moving
to Agile. Forrester had also found that “Shorter iterations and Scrum
practices are the most common Agile practices” and that Scrum is one
of the most common development approaches. Th is confi rmed the
widespread fi nding that Scrum is the most commonly applied method
for Agile soft ware development. Forrester thereby validated the results
of the yearly ‘State of Agile Development’ surveys conducted by
VersionOne (2011, 2013).

44 Scrum – A Pocket Guide

Although the adoption of Scrum is not typical or limited to a specifi c
economic sector, Forrester found the fi nancial services industry to
have the highest adoption of Agile methods. Th is is striking as large
fi nancial institutions are by their nature very risk averse. And they are
now adopting Scrum successfully (Verheyen & Arooni, 2012).

Scrum is the de facto standard against which to measure, to oppose or to

join. Scrum has emerged as the gorilla of the Agile family of methods for

software development.

2.4 FRAMEWORK, NOT METHODOLOGY
Scrum, with its roots in new product development theory, is designed
to help teams create and sustain complex soft ware products in
turbulent circumstances via self-organization. Scrum implements the
scientifi c method of empiricism to better deal with the complexity
and unpredictability of soft ware development. Scrum replaces the
industrial, plan-driven paradigm with well-considered, opportunistic
experimentation. Th e content of the Scrum framework has been
consciously limited to a bare minimal set of mandatory elements, so
that each element becomes essential. Breaking Scrum’s base design
by leaving out one or more elements is likely to cover up problems,
instead of revealing them.

Th e purpose of empiricism via Scrum is to help people perform
inspections & adaptations upon transparency of the work being
undertaken. Scrum builds in frequent reality checks to assure best
possible decisions. Scrum helps to adjust, adapt, change and gain
fl exibility. Th e rules, principles and roles of the framework, as
described in the Scrum Guide (Schwaber & Sutherland, 2013), serve
this purpose.

452 Scrum

Scrum, through its minimalistic design, has no exhaustive and formal
prescriptions on how to design and plan the behavior of all soft ware
development actors, nor does it lay out their expected behavior
against time in designs and plans, let alone how these designs and
plans must be documented, maintained and stored. Scrum has no
rules for upfront predictions of document types and deliverables to
be produced. Neither does Scrum instruct the exact time of their
production. Instead of installing, thriving and relying on handovers,
toll gates and control meetings, Scrum de-installs them as a major
source of delays, waste and disrespect.

Methodologies, by design, are composed of stringent and mandatory
sequences of steps, processes and procedures, implementing
predefi ned algorithms and executers for each step, process or
procedure. Th is holds the promise of success when the prescriptions
are followed. As such, ‘methodologies’ aspire to replace the creativity,
autonomy and intellectual powers of people with components like
phases, tasks, must-do practices and patterns, executive techniques
and tools. Practice and research shows that obedience to the
methodology only serves to ensure formal coverage for blame, not the
success of working results (Standish, 2011). Methodologies depend
on high degrees of predictability to have a high yield. Soft ware
development does not have that high degree of predictability.

Scrum is the opposite of such a big collection of interwoven
mandatory components and maximal set of complete prescriptions.
Scrum is not a methodology. Scrum replaces a pre-programmed
algorithmic approach with a heuristic one, with respect for people and
self- organization in order to deal with unpredictability and to solve
complex problems.

46 Scrum – A Pocket Guide

If and when Scrum is referred to as a ‘process’, it is certainly not a
repeatable process. Th at’s oft en a challenge to explain, because the
term ‘process’ typically invokes a sense of algorithmic and predictable
steps, repeatable actions and enforceable top-down control; the sort of
expectations that are typical for ... a methodology.

If referred to as a ‘process’, then Scrum is a servant process, not a
commanding process. What works best for all involved players and
their processes at work, emerges from the use of Scrum, not from
a dictate by Scrum’s defi nition. Players discover the work required
to close the gap between an inspected intermediate result and an
envisioned outcome. Scrum is a process that helps surface the most
eff ective process, practices and structures. Scrum helps discover a
way of working that is continuously adaptable to everybody’s actual
context and current circumstances. Th erefore, we prefer to call
Scrum… a framework.

The framework of Scrum sets the bounded environments for action, and

leaves it to the people to take action, decide on the best possible action

within those boundaries.

2.5 PLAYING THE GAME
Th e goal of Scrum, as a framework for Agile soft ware development, is
to optimize and control the creation of valuable soft ware in turbulent
enterprise, organizational, business and market circumstances.

Th e game board of Scrum (fi gure 2.4) shows the elementary elements
and principles of Scrum, all that’s minimally required to optimally
play the game.

472 Scrum

Development
Team

Product
Owner

Scrum
Master

Progress
Trends Sprint

Backlog

Product
Backlog Sprint

Planning

Daily
Scrum Sprint

Review
Valuable

Increment

Visual
Workspace

Self-
Organizing

Empiricism

Figure 2.4 The Scrum game board

Scrum requires great discipline from its players, but still leaves much
room for personal creativity and context-specifi c expansions. Th e rules
of the game are based upon respect for the people-players through a
subtle and balanced distribution of responsibilities. Respecting the
rules of the game, not taking shortcuts on rules and roles, nor short-
circuiting the empirical grounds of the game, deliver the most joys and
greatest benefi ts.

Th e Scrum game board shows the players, the artifacts, the events
and the main principles of the game of Scrum. Let’s take a closer look
at the rules that bind these elements together.

48 Scrum – A Pocket Guide

2.5.1 Players and accountabilities
Agile methods are driven by a sense of business opportunism. Th e
time-management technique of time-boxing all work allows the
players to quickly respond to new opportunities and adapt to any
changes and evolutions.

Scrum organizes its players into Scrum Teams. A Scrum Team
consists of three roles, where each role complements the other roles in
accountability, thereby turning collaboration into the key to success:
■ A Product Owner;
■ A Development Team;
■ A Scrum Master.

Th e Product Owner, a one-person player role, brings the business
perspective of the soft ware product to a Scrum Team. Th e Product
Owner represents all stakeholders, internal and external, to the
Development Team, a multi-person player role. Although a Product
Owner may have various strategic product management tasks outside
of the Scrum Team, it is important that the Product Owner actively
engages with the other players of the team regularly and repeatedly.

Th e Product Owner assures with the Development Team that a
Product Backlog exists. Th e Product Owner manages the Product
Backlog based on the product vision as a long-term view of the road
ahead. Product vision captures why the product is being built.

Th e Product Backlog shows all of the work actually envisioned for the
product that’s being created and sustained. Th is work may comprise
functional and non-functional expectations, enhancements, fi xes,
patches, ideas, updates and other requirements. If anybody wants to
know what work is identifi ed and planned for the product they only
have to look at the Product Backlog.

492 Scrum

Th e Product Owner expresses the business expectations and ideas
captured in the Product Backlog to the team, and orders the items
in the Product Backlog to optimize the value being delivered. Th e
Product Owner also manages the game budget to optimize the balance
of value, eff ort and time for the represented stakeholders.

Th e Development Team self-organizes to perform all end-to-end
development activities required to turn items from the Product
Backlog, expressed and ordered by the Product Owner, into releasable
soft ware. ‘Development’ applies to all work undertaken by the
Development Team within a Sprint, such as test cases, all testing
activities, programming code, documentation, integration work,
release activities, etc. It covers all work necessary to guarantee that
the Increment of product at the end of each Sprint is usable and that it
technically can be released to the users and consumers of the product
or service. Th e criteria that need to be met to do so, and thus also drive
the development work to be undertaken by the Development Team, is
oft en captured in a ‘defi nition of done’.

Th e Development Team also has a set of ‘Engineering Standards’ that
describes how the implementation is being performed. Th is is required
to guarantee the level of quality needed to ship regularly. And it
provides the right transparency to the way the game is being played.

Th e Development Team sets the cost or eff ort indication on Product
Backlog items. Th e Development Team selects the amount of work it
assumes it can handle in a Sprint at the start of that particular Sprint.
Th e evolving eff ort indications on Product Backlog can be compared
with proven experience to make a forecast of Product Backlog for a
Sprint.

50 Scrum – A Pocket Guide

Th e Scrum Master, a one-person player role, facilitates the Product
Owner and the Development Team during the game. Th e Scrum
Master teaches, coaches and mentors the Scrum Team, and also the
organization, in understanding, respecting and knowing how to
play the game of Scrum. Th e Scrum Master makes sure the rules of
the game are well understood and that any elements that hinder or
block the team in its progress are removed. Such elements are called
Impediments in Scrum.

Th e Scrum Master induces the continual desire to become better
players. Th e Scrum Master implements Scrum by helping others to use
Scrum.

2.5.2 Time
Th e time-boxed iterations in the game of Scrum are called Sprints.
Sprints allow the Development Team to focus on achieving the next
game level, the Sprint Goal, with minimal external disruptions.

All of the work in Scrum is organized in Sprints (fi gure 2.5). Scrum
does not typecast Sprints as the goal of each Sprint is to deliver a
valuable piece of working soft ware, a (product) Increment. A Sprint’s
duration is never more than four weeks and typically takes one to four
weeks.

As a container event, the Sprint encapsulates the Scrum meetings,
where every meeting is a time-boxed event and is an opportunity to
adapt to changing conditions:
■ Sprint Planning;
■ Daily Scrum;
■ Sprint Review;
■ Sprint Retrospective.

512 Scrum

Every Sprint begins with Sprint Planning where the Development
Team pull work into the Sprint from the actual Product Backlog.
Th e team selects the amount of work it deems feasible for the Sprint
against the expectations of what it takes to make it releasable. Th e
selected work is a forecast that represents the insights that the team
has at the time of selection. Th e Development Team might look at the
amount of work they have, on average, completed in past Sprints and
compare this to their capacity for the upcoming Sprint, to slightly
increase the accuracy of the forecast. Th e views of the Product Owner
are respected, and additional details are discussed with the Product
Owner during this meeting.

Th e selected work, the forecast, is designed, analyzed and elaborated
into a list of actionable development work, the Sprint Backlog. Aft er
the expiration of the time-box of the event, or possibly sooner,
the Development Team starts upon this work plan that has been

1-4W

24H
DAILY

SCRUM

SPRINT
PLANNING

SPRINT REVIEW &
RETROSPECTIVE

Vision Product

Backlog Sprint
Backlog

Product

Increment

Figure 2.5 Overview of a Scrum Sprint

52 Scrum – A Pocket Guide

collaboratively created. Sprint Planning never takes more than
eight hours.

To manage and follow up on its development work the Development
Team holds a short, 15 minutes, daily meeting called the Daily
Scrum. Th e meeting serves as a right-time planning event. Th e plan
with the upcoming work of the team is optimized for achieving the
Sprint Goal based upon the actual progress within the Sprint. Th e
adaptation is captured in an update of the Sprint Backlog. Th e actual
progress on the Sprint Backlog is visualized, based upon the amount of
remaining work. If the actual progress impacts upon the forecast, the
Development Team consults with the Product Owner.

As the Sprint progresses, an Increment of the product emerges
from the team’s collaborative work. At the end of the Sprint, the
Increment is inspected in a Sprint Review to check on the functional
fi tness to release it. If the Product Owner, as sole representative of
all stakeholders, deems the Increment useful then the Increment is
released without delay.

Th e Product Owner furthermore maintains a high level of
transparency by presenting Product Backlog evolutions during the
Sprint against the long-term product vision. While reviewing the
product Increment all players are likely to discover changes and
receive feedback and evolutionary insights from the inspection. Th ese
are processed into the Product Backlog for future implementation,
while understanding that the exact implementation date depends on
the Product Owner’s ordering and the team’s sustainable progress. A
Sprint Review never takes more than four hours.

Th e Sprint is concluded with a Sprint Retrospective in which the Scrum
Team inspects, and refl ects upon, the complete, well, ‘process’. Th e

532 Scrum

meeting covers all aspects of the work, i.e. technology, social aspects,
the Scrum process, development practices, product quality, etc. Th e
meeting is basically about establishing what went well, where there
is room for improvement and what experiments might be usefully
conducted in order to learn and build a better product.

As part of continuous improvement the Scrum Team agrees on
preservations, adjustments, experiments and improvements for the
next Sprint. A Sprint Retrospective never takes more than three hours.

Scrum only knows Sprints, and the goal of each Sprint is to deliver a piece

of working software, an Increment of the product. Working software is

considered the only measure of progress.

Th e Sprint length is kept steady over several Sprints for reasons of
consistency. It is the heartbeat of development and it’s useful for the
team to understand how much work can be done during a Sprint.

Th is amount of work is sometimes expressed as Velocity. Velocity is
an indication of the amount of work a team was able to create in past
Sprints. Velocity is the sum of eff ort or cost units that were completed
in a Sprint and is typical to one team, and one team’s composition.

Th e Sprint length is right-sized to capitalize on emerging and
previously unforeseen business opportunities. Th e collaborative
Sprint Review provides the Product Owner with the best possible
information on which to decide whether the Product will be shipped,
and how additional Sprints can further improve the value of the
product taking into account a balance of risk, eff ort, budget and
cohesion.

54 Scrum – A Pocket Guide

Th e Sprint length may also depend on how long a Team can work
without consulting with stakeholders at the Sprint Review. Th e Sprint
Review is an opportunity to adapt to new strategic directions.

A team will suff er from reduced learning and adaptation opportunities
when not consulting with stakeholders, markets, business evolutions
and new strategies at least every 30 days. Sprints may be shorter than
four weeks, but never longer. Modern soft ware development occurs in
highly complex and unpredictable circumstances.

2.5.3 Tracking progress
Overall progress of work is tracked and visualized, in order to create
progress trends that add predictability to uncertainty.

In order to continuously measure and adapt to reality and
achieve the best predictability possible, taking into account the
levels of complexity, the remaining work is re-estimated regularly and
honestly:
■ Sprint progress: Within a Sprint, progress is tracked on a daily

basis. Th e Sprint Backlog always holds the most realistic plan and
estimates of the work remaining to implement the Sprint Goal.

■ Product progress: Th e progress indication at the level of the Product
Backlog is updated and reviewed at a minimum at the Sprint
Review meeting. Th e Product Owner may package Product Backlog
items into tentative releases. Th e proven progress of past Sprints
gives the Product Owner and its stakeholders a forecasted delivery
date for releases, individual features or feature sets.

Th e classic Scrum approach to visualize progress is a Burn-down chart,
a graph showing the evolution of total remaining work (fi gure 2.6).

552 Scrum

Burndown Chart - Sprint 1.5
1.200

1.000

800

600

400

200

0

28
/fe

b/
20

13
1/

m
rt/

20
13

2/
m

rt/
20

13
3/

m
rt/

20
13

4/
m

rt/
20

13

7/
m

rt/
20

13
8/

m
rt/

20
13

9/
m

rt/
20

13
10

/m
rt/

20
13

11
/m

rt/
20

13
14

/m
rt/

20
13

15
/m

rt/
20

13
16

/m
rt/

20
13

17
/m

rt/
20

13
18

/m
rt/

20
13

21
/m

rt/
20

13
22

/m
rt/

20
13

23
/m

rt/
20

13
24

/m
rt/

20
13

25
/m

rt/
20

13
28

/m
rt/

20
13

29
/m

rt/
20

13
30

/m
rt/

20
13

31
/m

rt/
20

13

1/
ap

r/2
01

3
Do

ne

Figure 2.6 Example of a Sprint burn-down chart

However, the team decides on the best way to represent progress. Th is
may be a burn-down chart, a physical Scrum board, a burn-up chart
(e.g. in value), or it could be a cumulative fl ow diagram (fi gure 2.7).

2.5.4 The value of the Product Backlog
It is oft en said that the Product Backlog must capture all requirements.
However, the value of the Product Backlog lies not in completeness,
precision, detail or perfection. Th e value of the Product Backlog
lies in transparency, in making clear what work needs to be done in
order to create a minimally viable and valuable product (or product
Increment). Th e Product Backlog brings out into the open all work,
development, compliances, and constraints that a team has to deal
with in order to create releasable soft ware.

Product Backlog is an ordered list of ideas, features and options to
bring an envisioned soft ware product to life, and to sustain and grow
it. Th e list is bound to include all functionalities and features, but

56 Scrum – A Pocket Guide

naturally also includes fi xes, maintenance work, architectural work,
work to be spent on security, scalability, stability and performance, etc.
At the time of the creation of an item on the Product Backlog, the item
is supposedly valuable for a customer.

Every item on the Product Backlog holds just enough detail to make
it clear what the value represents. An item is intentionally incomplete
to encourage additional and explicit discussion over it. Each item is a
placeholder for discussion at the appropriate time.

Th e Product Owner has accountability for the Product Backlog.
But this won’t prevent the Product Owner from taking into account
the technical and development input from the Development Team.
Neither will it prevent the Product Owner from taking into account
dependencies, non-functional requirements and organizational
expectations.

Cumulative Flow Diagram - Sprint 1.5

Done Verification Progress Open Undone

1000

900

800

700

600

500

400

300

200

100

0

28
/fe

b/
20

13

1/
m

rt/
20

13
2/

m
rt/

20
13

3/
m

rt/
20

13
4/

m
rt/

20
13

7/
m

rt/
20

13

8/
m

rt/
20

13
9/

m
rt/

20
13

10
/m

rt/
20

13
11

/m
rt/

20
13

14
/m

rt/
20

13

15
/m

rt/
20

13
16

/m
rt/

20
13

17
/m

rt/
20

13
18

/m
rt/

20
13

21
/m

rt/
20

13
22

/m
rt/

20
13

23
/m

rt/
20

13
24

/m
rt/

20
13

25
/m

rt/
20

13

28
/m

rt/
20

13
29

/m
rt/

20
13

30
/m

rt/
20

13
31

/m
rt/

20
13

1/
ap

r/2
01

3
Do

ne

Figure 2.7 Example of a cumulative fl ow diagram

572 Scrum

Th e Product Backlog is gradually refi ned, thereby introducing
incremental requirements management over the product (fi gure 2.8).

Sprintable
Desirement Desirement

Desirement
Opportunity

Functionality
Option

Idea Option

Dependency
Action

User Story

Desirement
Constraint

Desirement

Planned

10%Ti
m

e

Refined

Future

Actionable / User Stories

Epic / Cosmic Stories

Figure 2.8 Incremental evolution of Product Backlog

As development progresses, the Product Backlog is refi ned, adjusted
and updated. Th e Product Backlog is continuously ordered and
re-ordered by the Product Owner. Th e items are regularly refi ned in
conjunction with the Development Team. Experience shows that 10%
is a sensible average of the overall time incurred on a Sprint to spend
on Product Backlog refi nement.

Th e Product Owner looks to balance the needs of all stakeholders,
internal and external, who are to be represented in the Scrum Team.
Continuously adhering to ‘just enough’ descriptions and designs of
the work, i.e. leaving out unnecessary details, ensures that no excessive
money and time is wasted if the item ultimately isn’t created or is
implemented in a diff erent fashion.

Th e level of description and detail of a Product Backlog item lies
somewhere between what used to be a desire and what used to be a
requirement. A ‘desire’ is too fuzzy to work on and a requirement
is over-specifi ed and over-detailed. Over-specifi cation in soft ware
development impedes the optimal use of technology, blocks the ability
to capitalize on synergies between diff erent functions and is a waste of

58 Scrum – A Pocket Guide

money in situations of even minimal turbulence or change. Th erefore
the term ‘desirement’ is well suited to a Product Backlog item.

Desirements move through in their ordering from Product Backlog
via Sprint Backlog into Increments of working product. While the
ordering of the Product Backlog depends upon a complex combination
of factors like cost/eff ort, dependencies, priority, cohesion and
consistency, it is essential to have a view on the value.

Core factors for a Product Backlog item are cost and value:
■ Cost: Th e cost, or eff ort, of a Product Backlog item is generally

expressed as the relative size of the item. Past Sprints show a team
how much work, expressed in eff ort or cost, can be transformed
on average into a working Increment during a Sprint. Upon this
empirical given, an expectation can be created of when an item on
the actual Product Backlog might become available as part of an
evolving product. It gives predictability, yet does not move into the
realm of predictions given that any such expectation is constrained
by today’s knowledge and circumstances.

■ Value: An important principle of Agile is “to satisfy the customer
through early and continuous delivery of valuable soft ware” (Beck
et al., 2001). Without an attribute for (business) value on Product
Backlog items, a Product Owner has no idea of how much value a
feature, an idea or a feature set presumably brings to the customer
whom he/she represents within the Scrum Team. Value will depend
on the type of enterprise and the product and market expectations.
Th e value of a Product Backlog item can be indirect, in it that not
picking up a Product Backlog item might undercut the value of the
system or even the organization, or that not pulling it may produce
negative value.

592 Scrum

Th e notion of value helps Product Owners and their stakeholders move
away from the (false idea of) perfection of a total product that must be
completely built before even considering its release. Th e focus shift s to
a minimal marketable product release and the minimal work it takes
to bring eff ective value to the marketplace. Product Backlog can be
used to group items, features and non-functional requirements into
cohesive feature sets.

Product Backlog is all the plan Scrum requires, its ‘desirements’ hold all

the information needed for predictability about scope and time. A Product

Backlog item needs the right attributes to be ordered, more than just

prioritized.

2.5.5 The importance of done
In a defi nition of ‘done’ the conditions are expressed that need to be
met by an Increment of product in order for it to be ‘shippable’. It is an
overview of all the activities, criteria, tasks and work that need to have
been performed on a working piece of soft ware in order to be able to
release it into production.

Th e defi nition of done is essential to fully understand the work
needed to create a releasable Increment and for the inspection of that
Increment at the Sprint Review. Th e defi nition of done serves the
transparency required in Scrum in terms of the work to be done and
the work actually done.

Th e prefi x ‘potentially’ is, however, added to ‘shippable Increment’.
Th is refers to the Product Owner’s accountability to decide upon the
actual release of an Increment; a decision that will likely be based on
business cohesion and functional usefulness as observed during the
Sprint Review. Yet, the Product Owner’s shipping decision should
not be constrained by ‘development’ work, hence all work required

60 Scrum – A Pocket Guide

to achieve the level of done is performed before the Sprint Review
meeting in the Sprint.

Th e empiricism of Scrum only functions well with transparency.
Transparency requires common standards to work against and to
inspect upon. Th e defi nition of done sets the standard for releasable,
and should be known by all players. Transparency means not only
visible, but also understandable. Th e content of the defi nition of done
should be self-explanatory.

Th rough the defi nition of done, quality is at the heart of what Scrum
Teams do. No undone work is part of the Increment. No undone
work is put into production. Ever. From the inspection of the
Increment based upon the defi nition of done at the Sprint Review, the
collaborative conversation might include quality, and requirements
with regards to the defi nition of quality in the organization. Th is helps
the team consider the defi nition of done at the subsequent Sprint
Retrospective. Th e self-organizing drive of the Development Team will
include all that’s actually possible, and more, take into account the
feedback from the stakeholders.

Primary ownership of the defi nition of done lies with the Development
Team, in the same way that primary ownership of Product Backlog
lies with the Product Owner. Th e Development Team does all the
hard work related to delivering working soft ware that complies to
the defi nition of done. A defi nition of done can’t be forced upon a
Development Team. Neither can it be cut short by forces outside
of the Development Team. Th e Development Team will include its
own development standards and will obviously incorporate the
functional or business quality expectations from the Product Owner.
Th e Development Team will also include general, organizational

612 Scrum

expectations and compliance (from the development, engineering,
quality or operations areas).

Decisions over the defi nition of done will depend on the presence of
the skills, authorizations and availability of external systems, services
and interfaces. Although dependencies are typically managed via
ordering of the Product Backlog, a Development Team prefers to
make progress. Th e team is likely to include stubs and simulators for
non-available systems or non-resolved technical dependencies. But
all parties remain aware that it is not really done, as in releasable.
It increases the independence of the team but does not remove the
dependence. Th ere is an unpredictable amount of work hidden in
the system and it must be performed at some point in order to have
shippable soft ware. In the mean time the Product Owner is blocked
from making the decision on whether or not to actually release.
Fortunately the Sprint Review reveals this information to stakeholders
too, so the chances are greater that appropriate actions will be taken
within the organization.

The defi nition of done stresses the importance of seizing the opportunity to

ship by doing all of the work required to capitalize on an opportunity within

a Sprint.

2.6 CORE PRINCIPLES OF SCRUM
Th e Scrum game board (fi gure 2.4) not only shows the formally
prescribed elements of Scrum but also three principles of Scrum that
I consider to be main principles and which I will elaborate on here:
■ Shared visual workspace;
■ Self-organization;
■ Empirical process control.

62 Scrum – A Pocket Guide

2.6.1 Shared visual workspace
Teams, in order to function properly and grow into a mature and
performing state, need a workspace they can share for their daily work.
Th e team will organize the workspace to optimize communication
and collaboration. Th is removes barriers – physical or mental – that
obstruct the fl ow of information. Th e shared workspace facilitates the
team and its members in making fast and committed decisions. It’s not
mandatory but obviously physical co-location is most optimal from a
team dynamics perspective. But even when not working co-located,
a team needs a shared workspace, utilizing modern communication
facilities.

Within the workspace a team should look to focus on value-adding
activities. All overhead and administrative work is kept to a bare
minimum. Th is includes the storage of information. Teams require fast
access to all team information, in order to create, maintain and share
it, and speed up all decisions that will be made upon it. It’s why teams
prefer to apply visual management techniques. Th e shared workspace
is probably fi lled with information radiators (Cockburn, 2002)3.
Information radiators limit the time it takes to convey information
and focus on the team as a unit, which is crucial when considering
soft ware development.

A task overview, team defi nitions, standards and agreements, process
artifacts and progress trends are all made accessible and visible within
the shared workspace by posting them on the room walls; on white
boards, fl ip charts or other means. Th is is not limited to the strict
process artifacts, but also includes all information the team deems
appropriate to visualize, such as designs and models, impact analyses,
impediments, the defi nition of done, the engineering standards etc.

632 Scrum

Upon entering the room all of the information is readily available, the
room radiates it towards the interested reader. Th e reader is not forced
to enter electronic systems, get authorizations, authenticate, search
for it, search for the most recent version of it, or even enquire about
it. Scrum Teams maintain all crucial information this way to share it
within and beyond the team members, and use it to inspect and adapt.

Th e information is not static. It constantly refl ects the current state of
aff airs, where the current state might be used to project expectations of
the future, like burn-down charts.

A shared visual workspace optimizes transparency and reduces the length of

information exchange drastically.

2.6.2 Self-organization
Scrum thrives on the daily collaboration of the three peer roles within
a Scrum Team. Each role has clear accountabilities within the team as
well as towards the organization. Th e Scrum Team and within it the
Development Team are self-organizing units of people.

Self-organization is not just the degree of freedom that is allowed.
Self-organization is not about delegation, self-organization is, it
happens. Self-organization is not about enabling or empowerment,
there is no higher authority that grants it. Th e ability to actually self-
organize requires the removal of many existing barriers that prevent
people from communicating, achieving insights and collaborating.
Th ere’s the role for external authority; facilitating teams by removing
organizational or procedural barriers.

Self-organization is not about anarchy or limitless freedom. Self-
organization has and requires boundaries, boundaries within which

64 Scrum – A Pocket Guide

self-organizations happens. Th e Scrum rules are one of the primary
boundaries within which a team organizes its own work:
■ Th e Development Team collaboratively selects work that is ordered

and expressed by the Product Owner, collaboratively creates
actionable activities for their forecast and re-plans the work on
a daily basis within a time-boxed Sprint to optimize the team’s
output.

■ Th e Product Owner interacts with stakeholders and product
management to identify the most valuable work, and relies on the
cross-functional Development Team for the actual delivery of it in
Increments of soft ware product. Stakeholders help in shaping the
future product at every Sprint Review.

■ Th e Scrum Master has no interest in scope, budget, delivery or
tasks but coaches and facilitates the complete ecosystem in using
Scrum to manage them.

People organized in teams have the highest cohesion, deepest trust and
most eff ective interconnections when the size of the team numbers
around seven. Although Scrum sets the expectation of Development
Team size between three and nine, there’s no formal process need
to enforce this. Th rough self-organization a team will adjust its size
autonomously until optimal performance is reached. Th is will even
happen across multiple teams working together. Th ere is no external
body who knows how to organize work better than the people actually
undertaking the work.

In his groundbreaking book ‘Drive’ Daniel Pink elaborates on the
scientifi c evidence of what motivates people. He describes how such
‘self-directiveness’, the ability for people to direct their own work,
is one of three crucial motivators in cognitive, creative work (Pink,
2009). ‘Mastery’ and ‘Purpose’ complement it. Together they make what
Pink identifi es as the third drive, the model for human motivation that

652 Scrum

follows the fi rst drive of surviving and the second drive of industrial-like
Taylorist schemes implementing ‘carrot and stick’ rewards.

However, autonomy and self-organization don’t resolve all problems.
Some problems go beyond the self-organization of the Development
Team. Scrum calls those ‘impediments’.

Th e general defi nition of an impediment is an ‘obstruction; hindrance;
obstacle’. An impediment in Scrum is a factor that blocks the
(Develop ment) team in its creation of a valuable piece of soft ware
in a Sprint, or that restricts the team in achieving its intrinsic level
of progress. It is the responsibility of the Scrum Master to remove
impediments.

Th e Scrum concept of ‘impediments’ however is not a replacement
for the traditional escalation procedures. An impediment is only an
impediment if it indeed surpasses the self-organizing capabilities of
the team, if it cannot be tackled within the self-organizing ecosystem.

Let’s illustrate this with the example of a team confl ict, a confl ict
between team members.

A team might have problems in resolving an inner-team confl ict
and call the confl ict an impediment, expecting the Scrum Master
to remove it for them. Essentially they expect the Scrum Master to
resolve the confl ict.

However, working as a team inevitably includes getting to know
each other, fi nding ways of building soft ware together, exploring
diff erent ways to collaborate, fi nding consensus over diff ering ideas,
outgrowing the desire for personal heroism. In her book, ‘Coaching
Agile Teams’ (Adkins, 2010), Lyssa Adkins elaborates on ‘constructive

66 Scrum – A Pocket Guide

disagreement’ as a necessity for teams4. Th is lowest level of confl ict
connects with the ‘built-in instability’ observed and described by
Takeuchi and Nonaka as the fertile ground for successful complex
product development (Takeuchi and Nonaka, 1986). It is a natural part
of the freedom given to a group of people to jointly discover the best
ways to move forward, in the absence of an external authority that
prescribes the solution.

Confl icts are a natural part of working with people, of working
as a team. It’s part of self-organization, part of aiming at high
performance. If a team raises it with the Scrum Master, we should
wonder what the real problem is. Is it the Scrum Master’s role to
resolve the confl ict? Or would that be an undesired intervention in the
self-organizing ecosystem, undermining future honesty, learning and
self-improvement?

How can the Scrum Master facilitate self-organization? Is it by off ering
teams an excuse, an external decision to hide behind? A Scrum Master,
as the promoter of Scrum and self-organization, should consider how
to help a team work out their problems themselves and off er any tools,
trainings and insights on how best to do this.

2.6.3 Empirical process control
Soft ware development is a complex activity in itself and it serves to
build complex products in complex circumstances.

One perspective on the degree of ‘complexity’ relates to the number
of parameters, variables and events that infl uence an activity and
its course. In soft ware development some of the more commonly
known parameters are requirements, skills, experience, people, teams,
technology, technical integrations, market conditions, regulations and
dependencies.

672 Scrum

However, it is not only the number of known parameters that’s
important, but also the knowledge of these parameters, the available
knowledge as well as the required knowledge. What is the level of
detail required to comprehend a variable as well as the future behavior
of the variable? Even if a parameter is known, the level of detail may
be too deep to be able to manage and control it. And then, of course,
the behavior of the parameter is still not necessarily predictable.
A variable may behave completely diff erently to what is expected.

‘Complexity’ is also dependent on the nature of the activity itself.
Th e exact and detailed outcomes of soft ware development are hard
to describe and predict before or at the beginning of the actual
development. Th e steps, tasks and activities that combine to make the
actual soft ware development work aren’t predictable with any degree
of high precision. People perform them, and the involvement of people
is dependent on many circumstances. And then there’s also working
with technology itself, where technology evolves constantly and is
dependent on the particularity of the organization’s environment.

Th e steps, tasks and activities of soft ware development aren’t
predictable to any degree of precision because they are not repeatable.
Every ‘product’ being built is unique, new technologies emerge, new
interfaces need to be built, new plug-ins are used, new integrations
need to be set up, new insights and techniques for programming are
discovered daily.

Th e degree of dynamism of a problem or activity requires the right
process to be in place in order to have control over the activity:
■ Open loop system: All of the variables are gathered upfront because

they need to be presented to the system, where in a single run a
number of steps are performed resulting in a predicted outcome
(fi gure 2.9). In order to have predictability of the elapsed time, this

68 Scrum – A Pocket Guide

type of process control assumes a high degree of predictability of
the variables that infl uence the process as well as of the process
activities themselves.

To gain control over large or complex problems, in an open loop
system, subsystems are created where each subsystem is an open
loop system. Each subsystem is presented with the output of the
previous subsystem. In situations of increased turbulence and
frequent change, deviations and variances will accumulate across
the various subsystems, far beyond acceptable levels and will only
be detected at the end of the fi nal subsystem.

System
Input Output

Figure 2.9 Open loop system

Predictive plans are expressions of the industrial paradigm and
implementations of open loop thinking. But predictive plans
can only include known variables, and their expected behavior.
Predictive plans create the illusion that the behavior of the known
variables is precisely understood and that other variables are non-
existent. Predictive plans invite lengthy upfront consideration of
all elements that should be part of the plan, and attempt to foresee
the unforeseeable. In order to control non-predicted variables or
unexpected behavior weighty procedures are required to check,
maintain and update the predictive plan.

■ Closed loop system: Th e actual outcome of the system is regularly
compared to the desired outcome, in order to eliminate or
gradually diminish any undesired variances (fi gure 2.10). Not
all variables and parameters need to be known precisely and in
detail upfront, as the process applies self-correction and takes into

692 Scrum

account new or changing parameters. Th is technique of regular
inspections requires and creates transparency. Th e real situation is
inspected, and exposed, so that the most appropriate adaptations
can be undertaken to close the gap between the eff ective and the
expected outputs. Th e people performing the inspections, the
inspectors, need clear and agreed standards in order to carry out
their inspections. Hence the need for transparency of the process
and all its variables for all players involved.

System

Feedback

Input Output
∑

Figure 2.10 Closed loop system

Scrum acknowledges that the complexity of soft ware development
requires the right process, i.e. closed loop feedback. Scrum replaces
the open loops of traditional processes with the empiricism of closed
loop systems. Scrum implements regular inspection and adaptation
opportunities at which the players can learn from an inspection,
gather feedback over the output and improve. Scrum brings reality-
based control over soft ware development.

Scrum implements two specifi c closed-loop feedback cycles. A Sprint
forms an ‘inspect and adapt’ cycle that wraps the 24-hours ‘inspect
and adapt’ of the Daily Scrum:
■ Th e Daily Scrum: Th e Development Team inspects its progress, and

estimates and plans its tasks within the container of the Sprint. All
of these elements were initially laid out in the Sprint Planning. Th ey
use the Sprint Backlog, the Sprint Goal and a progress trend to
consider the remaining eff ort. It assures they don’t get out of sync

70 Scrum – A Pocket Guide

with each other in the team and with the Sprint Goal for more than
24 hours.

■ Th e Sprint: A Sprint is a cycle that starts with forecasting the work
and ends with an inspection of what was actually built, the product
Increment, including how it was built, the process, the team
interactions and the technology.

Th e events of Scrum set the frequency of the inspection and
adaptation, where the artifacts contain the information to be inspected
and adapted (fi gure 2.11):

Event Inspection Adaptation
Sprint Planning • Product Backlog

• (Commitment Retrospective)
• (Defi nition of Done)

• Sprint Goal
• Sprint Backlog
• Forecast

Daily Scrum • Sprint Progress
• (Sprint Goal)

• Sprint Backlog
• Daily Plan

Sprint Review • Product Increment
• Product Backlog
• (Release Progress)

• Product Backlog

Sprint Retrospective • Team & collaboration
• Technology & engineering
• Defi nition of Done

• Actionable
improvements

Figure 2.11 Scrum’s Empiricism

 Th ese are the formal events that Scrum foresees as opportunities to
inspect and adapt to the actual situation, so that the art of empiricism
is performed no later than at the time of these events. Th is should not
impede team members from improving and discussing improvements
and progress whenever required. In a world of high dynamism that
leads to using the Scrum framework it would be very strange if teams
did not capitalize on new information and insights that improve their
development life as soon as possible.

712 Scrum

2.7 THE SCRUM VALUES
Scrum, as has been demonstrated, is a framework of rules, roles and
principles that helps people and organizations to develop a working
process that is specifi c and appropriate to their time and context.
Scrum implements empiricism as this is the most optimal process to
enable control over complexity.

Th e framework of Scrum is based upon some core values (Schwaber
& Beedle, 2001). Although these values were not invented as a part of
Scrum, and are not exclusive to Scrum, they do give direction to the
work, behavior and actions in Scrum (fi gure 2.12).

In a Scrum context the decisions we take, the steps we take, the way
we play the game, the practices we add and the activities we surround
Scrum with, should all re-enforce these values, not diminish or
undermine them.

Commitment

Focus

OpennessRespect

Scrum

Courage

Figure 2.12 The Scrum values

72 Scrum – A Pocket Guide

2.7.1 Commitment
A general defi nition of ‘commitment’ is “the state or quality of being
dedicated to a cause, activity, etc. It can be illustrated by a team’s
trainer stating “I could not fault my players for commitment”.

Th is describes exactly how it was originally intended to be used in
Scrum. Commitment is about dedication and applies to the actions
and the intensity of the eff ort. It is not about the fi nal result.

Yet, there was a widely spread misinterpretation of the word commit-
ment in a Scrum context. Th is originates mainly from the past
expectation of the Scrum framework that said teams should ‘commit’
to the Sprint. Th rough the lens of the old, industrial paradigm this was
wrongly translated into an expectation that all scope selected at the
Sprint Planning would be completed by the Sprint Review, no matter.
‘Commitment’ was wrongly converted into a hard-coded contract.

In the complex, creative and highly unpredictable world of soft ware
development, a promise of exact scope against time and budget is not
possible. Too many variables infl uencing the outcome are unknown or
may show unpredictable behavior.

To better refl ect the original intent and connect more eff ectively to
empiricism, ‘commitment’ in the context of scope for a Sprint was
replaced with ‘forecast’.

However, commitment still is and remains a core value of Scrum:

Th e players commit to the team. Commit to quality. Commit to
collaborate. Commit to learn. Commit to do the best they can, every
day again. Commit to the Sprint Goal. Commit to act as a professional.
Commit to self-organize. Commit to excellence. Commit to the Agile

732 Scrum

principles. Commit to create working soft ware. Commit to look for
improvements. Commit to the defi nition of done. Commit to the
Scrum framework. Commit to focus on value. Commit to fi nish work.
Commit to inspect and adapt. Commit to transparency. Commit to
challenge the status-quo.

2.7.2 Focus
Th e balanced but distinct roles of Scrum enable all players to focus on
their expertise.

Th e time-boxing of Scrum encourages the players to focus on what’s
most important now without being bothered by considerations of what
might stand a chance of becoming important at some point in the
future. Th ey focus on what they know now. YAGNI (‘You Ain’t Gonna
Need It’), a principle from eXtreme Programming that eff ectively
captures the focus of Agile, helps in retaining that focus. Th ey focus on
what’s imminent as the future is highly uncertain and the players want
to learn from the present in order to gain experience for future work.
Th ey focus on the work needed to get things done. Th ey focus on the
simplest thing that might possibly work.

Th e Sprint Goal gives focus to a period of 30 days, or less. Within that
period, the Daily Scrum helps people collaboratively focus on the daily
work.

2.7.3 Openness
Th e empiricism of Scrum requires transparency, openness, and
honesty. Th e player-inspectors want to check on the current situation
in order to make sensible adaptations. Th e players are open about their
work, progress, learning and problems. But they are also open for
people, and working with people; acknowledging people to be people,
and not ‘resources’, robots or replaceable pieces of machinery.

74 Scrum – A Pocket Guide

Th e players are open to collaborate across disciplines, skills and job
descriptions. Th ey are open to collaborate with stakeholders and the
wider environment. Open in sharing feedback and learning from one
another.

Th ey are open for change as the organization and the world in which
they operate change; unpredictably, unexpectedly and constantly.

2.7.4 Respect
Th e broad Scrum ecosystem shows respect for people, their experience
and their personal background. Th e players respect diversity. Th ey
respect diff erent opinions. Th ey respect each other’s skills, expertise
and insights.

Th ey respect the wider environment by not behaving as an isolated
island in the world. Th ey respect the fact that customers change their
mind. Th ey show respect for the sponsors by not building features
that will never be used and that increase the cost of the soft ware. Th ey
show respect by not wasting money on things that are not valuable,
not appreciated or might never be implemented or used anyhow. Th ey
show respect for users by fi xing their problems.

All players respect the Scrum framework. Th ey respect the
accountabilities of the Scrum roles.

2.7.5 Courage
Th e players show courage in not building stuff that nobody wants.
Courage in admitting that requirements will never be perfect and that
no plan can capture reality and complexity.
Th ey show the courage to consider change as a source of inspiration
and innovation. Courage to not deliver incomplete soft ware. Courage
in sharing all possible information that might help the team and the

752 Scrum

organization. Courage in admitting that nobody is perfect. Courage to
change direction. Courage to share risks and benefi ts. Courage to let
go of the feint certainties of the past.

Th e players show courage in promoting Scrum and empiricism to deal
with complexity.

Th ey show courage to support the Scrum Values. Th e courage to take
a decision and make progress, not grind, and even more courage to
change that decision.

Notes
1 Object-Oriented Programming, Systems, Languages & Appli-

cations.
2 31% indicated not to be following any methodology. 21% indicated

they were doing iterative development.
3 Find an excerpt of the referred book at

http://alistair.cockburn.us/Information+radiator.
4 Find an excerpt of this part of the referred book at

http://agile.dzone.com/articles/agile-managing-confl ict.

76 Scrum – A Pocket Guide

Tactics for a purpose3
Scrum has been around for more than 20 years. Over these years the
framework has gradually evolved via small functional updates. Th e
basic elements are still the same, as are the principles and rules that
bind them together. But the mandatory prescriptions of Scrum grow...
lighter, as the evolution of the Scrum Guide (Schwaber & Sutherland,
2013) shows.

Th e focus of the framework is still changing toward describing ‘what’
is expected, i.e. the purpose of the rules, from an understanding of the
‘why’ of the rules, as opposed to instructing ‘how’ to exactly apply the
rules.

Th e previous chapter describes the rules to playing the game of Scrum.
But the rules of the Scrum framework leave room for diff erent tactics
to play the game, tactics that are at any time right-size and can be
fi tted to context and circumstances. It’s as in all games and sports,
every team plays by the same set of rules, yet some teams are more
successful than others. Success depends on many factors, and not
all are equally controllable by the teams themselves, but success is
certainly infl uenced by the tactics chosen to play the game.

78 Scrum – A Pocket Guide

It is like selecting good practices from a collection of such good
practices and turning them into best practices by applying and tuning
them to a specifi c context. Scrum can be called a ‘process’, but it’s a
servant process, not a commanding process. Scrum does not say what
practice to do, or not to do. Scrum helps discover whether it works, but
leaves it to the players to keep on doing it, or changing it.

Th ere are many tactics to use within Scrum. Good tactics serve the
purpose of Scrum. Good tactics re-enforce the Scrum values, rather
than undercut them.

Let’s take a closer look at some examples to clarify the diff erence
between tactics and rules:

3.1 VISUALIZING PROGRESS
A good illustration of an evolution of the Scrum framework towards
more lightness is the elimination of burn-down charts as mandatory.

Looking at the rules of Scrum, including the need for transparency,
which is crucial to the process of inspection and adaptation, and
self-organization, it is clear ‘why’ it is important to visualize progress.
Self-correction is diffi cult to achieve without it.

Th e former obligation, however, to use burn-down charts for it (the
‘how’) has been removed. Th e form or format of the visualization is no
longer prescribed. It is replaced by the mere, but explicit, expectation
that progress on the mandatory Scrum artifacts of Product Backlog
and Sprint Backlog is visualized (the ‘what’).

Burn-down charts are still a great way to play the game and are
suitable in many situations. Yet, they have been turned into a non-
mandatory, good practice.

793 Tactics for a purpose

Yes, it’s Scrum if the Backlogs exist and a visualization of their
progress is available, accessible and clear. But there are multiple good
practices for that visualization. It may be a burn-down chart with open
eff ort. It may be a Cumulative Flow Diagram. It may be as simple as
a Scrum board. For the progress on Product Backlog it may also be a
burn-up chart in value.

3.2 THE DAILY SCRUM QUESTIONS
Scrum suggests that in the Daily Scrum meeting every player of the
team answers three questions with regards to the progress of the team
towards its Sprint Goal (Done? Planned? Impediments?).

But even if the players answer the questions, they can still limit it
to a personal status update. Th ey might use the walls or the Scrum
Board for presentation purposes. Th ey might just make sure that they
simply answer the three questions. Th is is because of the inability to
look beyond the prescription of Scrum that tells them to answer the
question. Th e rules are formally followed without understanding the
‘why’.

Is the team merely seeing Scrum as a methodology? Or is the team
using Scrum as a framework for discovery and collaboration? It
doesn’t help much whether they formally answer the three questions
or not if they don’t actually talk to each other. It doesn’t help much if
they don’t reveal the information to optimize their shared work plan
for the next 24 hours against the Sprint Goal. Maybe they use the
meeting only as a reporting obligation, as a mental remainder of the
industrial paradigm. Maybe they feel pressured to make sure all their
micro-tasks are logged, and cover themselves against possible blame.

But in doing so, they miss the opportunity to gain insight in the real
situation, to inspect it and to adapt it.

80 Scrum – A Pocket Guide

Th e goal of the Daily Scrum is to share information, and to re-plan the
Development Team’s collective work so that they progress in the best
possible way towards the Sprint Goal. Th at should be the background
from which the three questions are addressed, not blindly to go
through the three questions from a ‘best practice’ viewpoint.

Did you know that a Daily Scrum is not necessarily a Daily Stand-up?

Th e Daily Stand-up is the practice described in eXtreme Programming
(Beck, 2000) that serves the same purpose as the Daily Scrum in
Scrum. But eXtreme Programming tells participants to do it while
standing up.

Scrum has no obligation to do it standing up. However, it is a good
tactic, especially to keep the time-box within 15 minutes.

3.3 PRODUCT BACKLOG REFINEMENT
Refi nement of the Product Backlog is an on-going activity during a
Sprint in which the Development Team and the Product Owner look
at the Product Backlog currently ordered for one of the next Sprints.
Th ere is a growing certainty that the items are actually going to be
implemented as the timing gets closer.

As items come closer in time, teams might want to unveil
dependencies, understand better what is expected from the work,
decide on a shared approach for its development or help a Product
Owner understand the development impact at a functional level.
Colla borative refi nement of Product Backlog, and the additional
knowledge that emerges from the refi nement conversation, increases
the chances that the work might actually, or more easily, be pulled into
a Sprint when it is presented at Sprint Planning.

813 Tactics for a purpose

Product Backlog refi nement is not an offi cial, time-boxed Scrum
event. Th e ambition of Scrum is to remain simple, yet suffi cient. Th e
ambition of Scrum is to help people and teams discover additional
practices that may or may not be appropriate in their specifi c context.
Product Backlog refi nement is an activity that many teams undertake
to smoothen their Sprints, and limit turbulence in the fi rst days of
a Sprint. A typical feature of Product Backlog refi nement activities
is that estimates of eff ort or cost get set, or are revised. Other teams
may be much further down their Agile path, need less precision at
Sprint Planning or have a relationship with the Product Owner that’s
less about accuracy. Th ey cope without it, or do it less formally, do
it without explicitly naming or consciously planning this activity.
Th ey would perceive it as optional or even as an overhead if it was a
mandatory event instructed by the Scrum framework.

Product Backlog refi nement is a great activity within a Sprint, a
good tactic to collaboratively manage Product Backlog. Some can do
without however.

3.4 USER STORIES
In eXtreme Programming (Beck, 2000) requirements are captured in
‘User Stories’. User Stories are written on index cards, and describe
functional expectations from a user’s perspective. Bill Wake, an early
practitioner of eXtreme Programming, suggested the ‘INVEST’
acronym as a simple way to remember and assess whether or not
a User Story is well formed: Independent, Negotiable, Valuable,
Estimable, Sized appropriately, Testable. (For details see http://xp123.
com/articles/invest-in-good-stories-and-smart-tasks/.)

User Stories typically describe a feature, the ‘Story’, from the
perspective of the ‘User’. Th e advantage of taking the user’s perspective

82 Scrum – A Pocket Guide

to describe the system or application requirement is the focus on the
value of the work for that user.

Index cards are easy to move around on, or remove from, a planning
board, as an information radiator. Another advantage of using
physical index cards for a story is the limited space for textual
descriptions and details. It ensures that it is incomplete by design and
in this way makes sure that conversation takes place as a result of a
story. As a User Story comes closer in time, and the chances grow that
it will get implemented, it necessarily requires discussion to discover
additional details. More information may be added to the card, and
some of this may be expressed as acceptance criteria for the User Story.
Such acceptance criteria are typically written on the back of the card.

A Product Backlog in Scrum serves to provide transparency to all
work that a Scrum Team needs to do. Th is comprises more than just
functional requirements. Although the User Story format may be used
for other types of requirements, there is no natural fi t. And it tends
to lay the focus on the syntax, away from the information that’s to be
conveyed.

Th ere is no obligation, from Scrum, to use the User Story format for
Product Backlog items. It risks forgetting other important work that
needs to be undertaken, or it might force teams to spend more time
and energy on using the ‘right’ format, thus creating waste. However,
for functional items on the Product Backlog, User Stories can be very
good, a great tactic.

833 Tactics for a purpose

3.5 PLANNING POKER
Planning Poker is an estimation technique invented by James
Grenning during an eXtreme Programming project where he suff ered
from having to spend too much time on producing estimates.

In Planning Poker a team has a discussion about a requirement,
aft er which every team member decides on an estimate for the
requirement by picking a value from a set of poker cards. Poker
cards typically use an exponential scale like the Fibonacci sequence
(1, 2, 3, 5, 8, 13, 21, 34, ...). All team members keep their chosen value
to themselves until everybody has done so. Th ey then reveal their
estimate at the same time, aft er which they continue the conversation
over possible diff erences. Th is cycle is repeated until agreement and
a joint understanding of the requirements are reached. Estimates
are generally relative to each other and are expressed in an abstract
unit, like (Story) points or even gummy bears as in early eXtreme
Programming projects.

In Scrum, estimates on Product Backlog items are the ultimate
responsibility of the Development Team. As part of transparency and
colla boration, it is required to have honest and unbiased estimates
from the complete Development Team.

Although not mandatory, Planning Poker is a good tactic for that
principle. But don’t forget that the ultimate intention is to invoke an
honest discussion about the estimates, because this results in a good
understanding of the work attached to implementing the discussed
item.

3.6 SPRINT LENGTH
Scrum only determines the maximum length of a Sprint, i.e. no more
than four weeks (or 30 days, or a calendar month). Th is maximum

84 Scrum – A Pocket Guide

length ensures that nobody is deprived of the right to inspect a piece of
working soft ware at least every 30 days and to adapt the future plans.
Also the team does not have to be locked away in a container for too
long, which risks them losing a grip on the changing world.

Sprint length holds a balance between focus and opportunistic
adaptiveness. Th e balance should be business driven.

In an empirical process like Scrum, control objectives are presented
to a system and, via closed-loop feedback, results are regularly
inspected against these objectives in order to adapt materials, tasks
and processes. Skilled inspectors, the roles foreseen by Scrum, carry
out inspections at an appropriate frequency, so the focus and time
required to create valuable output are balanced against the risk of
allowing too much variance in the created output.

In addition to transparency, frequency is an important factor in
empiricism. Th e Scrum events determine the frequency of the
inspections and adaptations in Scrum, with the Sprint being a
container event, the outer feedback loop.

Th ere is a tendency to move to shorter Sprints. Although not a formal
obligation, one week Sprints seem like an acceptable minimum.

Let’s have a look at this by presuming that a team does one-day
Sprints. All Scrum events, as opportunities to inspect and adapt, take
place in the same day, and are organized at a high frequency. Th ere is
a signifi cant danger that a Scrum Team will focus merely on its daily
work and progress. Th ey will take no time to inspect and adapt the
overall process, or probe for ways to improve quality or connect to an
overarching goal and objectives. Th ey will just try to get more product
out the door, every day.

853 Tactics for a purpose

Sprint length also determines the frequency at which the Product
Owner and the Development Team consult with stakeholders over a
working version of the product. Th is reveals important information
and it helps the Product Owner to make the decision on a release of
the product Increment. In the case of one-day Sprints, stakeholder
buy-in will be more diffi cult to achieve, let alone capture and adapt to
enterprise, market and strategic changes.

Sprint length should take into account the risk of losing a business
opportunity because Sprints are too long. If your business is indeed so
volatile that you risk losing opportunities by spending more than one
day in the container of a Sprint, please do one day Sprints and release
daily. But be careful of burning the inspection mechanisms with such
high frequency and organize work that is sustainable indefi nitely.

Consider your Sprint length as a tactic to play Scrum. See how it
works and adapt accordingly, bearing in mind stability, heartbeat and
sustainable pace.

3.7 SCALING SCRUM
We have described the basic rules to play the game of Scrum. Th e rules
remain consistent and are independent of the scale at which Scrum is
organized.

Scrum promotes simplicity. Scrum promotes clear accountability and
peer collaboration to deal with unpredictability and formulate answers
to complex problems.

Simplicity, bottom-up accountability and collaboration were not at the
core of many enterprises when scaling their organizations and their
work. Th e main challenge in scaling Scrum lies not in fi tting Scrum
into the existing structures, but to revise the existing structures via

86 Scrum – A Pocket Guide

a bottom-up understanding, implementation and growth of Scrum,
while keeping the base rules of the game intact and respecting them.

Th ere are some tactics that allow Scrum to be played on a larger scale,
depending on the context.

3.7.1 Serial Scrum
Th e simplest situation for undertaking product development with
Scrum is to have Product Backlog capturing the desirements for the
product, and having one Scrum Team implementing the Product
Backlog in time-boxed Sprints (fi gure 3.1).

Th e Development Team has all the skills to turn several Product
Backlog items into a shippable product Increment per Sprint, guided
therein by the defi nition of done. Th e Development Team manages its
work autonomously via Sprint Backlog and has a daily inspection to
safeguard direction and alignment via the Daily Scrum. Th e Product
Owner provides right-time functional and business clarifi cations.
Th e Scrum Master coaches, facilitates and serves the team and the
organization.

Scrum Team

Product Backlog

Increment

Figure 3.1 A serial Scrum implementation

873 Tactics for a purpose

Th e biggest challenge lies in having all development skills
collaborating as one team. But if that problem is overcome, the
Sprint Review is fully transparent, an important prerequisite to make
the empirical approach of Scrum work. Th e team uses the Sprint
Retrospective to improve itself.

3.7.2 Multiple Scrum Teams
For larger products or faster results, the need to create and release a
product with multiple Scrum Teams may surface (fi gure 3.2).

Th e multiple Scrum Teams build one product, i.e. work on the
same Product Backlog. Each Scrum Team has a Product Owner,
Development Team and Scrum Master. Each Scrum Teams selects
Product Backlog items to create a forecast, and designs a Sprint
Backlog for that forecast. Each Development Team self-inspects via a
Daily Scrum meeting.

Th e need for a transparent ‘inspection’ at the Sprint Review remains.
Transparency enables the Product Owner to decide on releasing the
Increment of the product to the users. Th e Increment should still have
no undone, hidden work left , and should technically be releasable.
However, the multiple Scrum Teams are jointly building the same
product. Only an inspection of an integrated Increment assures the
Product Owner, and the stakeholders, of complete transparency.

Th e multiple Scrum Teams self-organize, within the boundaries of
the Scrum rules and principles. When working with multiple Scrum
Teams, i.e. several teams creating and sustaining the same product,
the teams will self-organize against the expectation of creating an
integrated Increment in every Sprint.

88 Scrum – A Pocket Guide

On top of the Daily Scrum per team, the teams need regular
communi cation across the multiple Scrum Teams to align their work
plans within the Sprint against the objective of creating an integrated
Increment. Th e Scrum Teams scale the principle of a Daily Scrum to a
cross-team level and do Scrum-of-Scrums meetings.

Th e most appropriate representatives of the Development Teams
gather regularly to exchange development information, so that each
Scrum Team can optimally re-plan and adjust its Sprint Backlog.
As a result, the multiple Scrum Teams optimize their joint progress
towards an integrated Increment of product by the end of each Sprint.
Th e usable Increment can be released upon the assessment by the
Product Owner of whether it has the right level of usefulness.

Scrum Team

Product Backlog

Increment (integrated)

Scrum Team

Scrum Team

Scrum Team

Figure 3.2 Multiple Scrum Teams scaling pattern

Th e multiple Scrum Teams work against the same quality criteria for
the product as expressed in the defi nition of done. Th e multiple Scrum
Teams will most likely work on the same Sprint length in order to
simplify planning and integration. Additional work will be foreseen in
their Sprint Backlogs to keep their work integrated and healthy.

893 Tactics for a purpose

3.7.3 Multiple products
At a portfolio or program level, the planning and implementation of
several products may need to be aligned and synchronized. For each
product a Product Backlog exists with one Scrum Team or multiple
Scrum Teams to create and sustain it (fi gure 3.3).

From the accountabilities of Scrum it is clear that alignment and
synchronization are undertaken on the Product Backlogs by the
Product Owners. Product Backlogs are ordered on an additional
program or portfolio factor. Th e Product Owners, thereby assisted and
facilitated by the organization, incrementally manage their Product
Backlogs on the basis of shared information and shared progress.

Scrum Team

Scrum Team

Scrum Team

Scrum Team

Scrum Team

Scrum Team

Scrum Team

Scrum Team

Scrum Team

Scrum Team

Figure 3.3 Scrum scaling pattern to handle multiple products

90 Scrum – A Pocket Guide

Many more scaling problems, and therefore scenarios, exist. There is not

one silver bullet solution. Scrum promotes bottom-up thinking with top-down

support to discover and emerge what works best for you, your organization

and your context (Schwaber & Sutherland, 2012).

The future state
of Scrum4

4.1 YES, WE DO SCRUM. AND…
Scrum emerged in the 1990’s from the work and discovery of Ken
Schwaber and Jeff Sutherland. Th ey critically analyzed practices which
at that time were considered as common in soft ware development,
their own professional experience, successful product development
techniques (Takeuchi & Nonaka, 1986) and process control theory.
Th e sum of their fi ndings became Scrum (Schwaber, 1995). In the
years that have passed since the publication of the ‘Manifesto for
Agile Soft ware Development’ in 2001, Scrum became the most applied
framework worldwide for Agile soft ware development.

Yet, Scrum has remained a light and simple way to organize soft ware
development based upon the Agile principles and ideas. In my opinion,
the low-prescriptive nature of Scrum is the foundation for its success.
Scrum, as an organizational framework, can wrap existing product
development practices or render some of these existing practices
superfl uous. Scrum is likely to reveal the need for new practices. Th e
benefi ts of Scrum will be greater when complemented by improved or
revised engineering, product management, people and organizational
practices. But the core is stable.

92 Scrum – A Pocket Guide

Over the fi rst two decades of its existence, organizations have
primarily used Scrum to add predictability to the IT and technology
aspects of soft ware development. For many IT people worldwide,
the Scrum framework has become a proven solution. Despite the
great results, like Agile overtaking waterfall and the gorilla position
of Scrum, there is room for improvement. Th ere is a need to take it
further.

Challenging the status quo of the industrial paradigm has improved
continuous learning in dealing with many technological uncertainties
in the ICT domain. And in many organizations the understanding
has been restored that soft ware development is a creative and complex
activity. But that focus is on ‘how’ soft ware is built. It is time to
elaborate on the achieved results and take Scrum adoption to the next
level.

Th ere is a myriad of possibilities to play and complement Scrum, and
the results and performance of Scrum are infl uenced by many factors.
Th e co-location of people infl uences it. Th e energy, dedication and
joy of the people-players infl uence it. Th e level of self-organization
infl uences it. Th e fact whether people have to multi-task infl uences
it. Th e availability of engineering and testing automation, tools,
platforms and practices infl uences it.

A crucial aspect is the cross-functional thinking that goes beyond the
walls of the IT department through the enterprise. Remember that
Agile soft ware development is driven by business opportunities. From
having implemented Scrum for the ‘how’ of product development,
adding more focus now to ‘what’ needs to be built is crucial. Th at shift
will help organizations discover the power of the possible product,
reduce the amount of product built, instead of merely optimizing the
way that the product is being developed (see section 4.2).

934 The future state of Scrum

Th ere is a myriad of techniques and practices to play Scrum and to add
to Scrum. But more than process and techniques, moving from the
old, industrial paradigm to the new Agile paradigm is about culture
and behavior. Th e common bottom-up enthusiasm that arises from
doing Scrum is unlikely to be suffi cient for such transformation.
For a lasting eff ect the common bottom-up enthusiasm needs to be
supported and facilitated by upstream adoption (see section 4.3).

4.2 THE POWER OF THE POSSIBLE PRODUCT
Th e development of soft ware products can be much improved if
we deal better with what soft ware is being built; the requirements,
features and functions.

In turbulent enterprise, business and market circumstances, the
certainty and stability of soft ware requirements is low. Improved and
active collaboration with business owners and product managers is a
natural next step in optimizing soft ware product development. Only
the people accountable for the business value of the soft ware products
can help to overcome the unavoidable absence of full agreement over
features and requirements. And more than ever these product people
do need the fl exibility to capitalize on unforeseen opportunities in
order to build the best possible product at the right time.

Th e Scrum framework allows people to give up on trying to predict
the unpredictable, as it deals with answers, solutions and competing
ideas that emerge while building. Scrum renders the question of
whether issues were thought of upfront as irrelevant. Requirements
as the input for soft ware development system are no longer expected
to be complete, fi nal and exhaustive. Scrum helps by accepting – and
embracing – the fact that the fi nal agreement on the ‘what’ of the
soft ware product only gets resolved while creating it. Scrum helps
by validating internal decisions frequently against the usage of the

94 Scrum – A Pocket Guide

soft ware product in the marketplace. Scrum opens the door for, and
promotes, frequent functional releases as the best way to progress,
since they build in regular feedback from customers and do not merely
accumulate assumptions from customer representatives via sequential
open loop systems. Real user feedback can be easily incorporated as
emerging requirements when connection to the marketplace is tight.

In Scrum, the Product Owner is the only one telling the Development
Team what to build (next). Th e Product Owner consolidates the
work from the Development Team into a next release or version of
the product for the marketplace. Th e mandate of the Product Owner
infl uences the level of improvement and agility an organization
achieves with Scrum. On top of the mandate, a Scrum Product Owner
needs a close connection to all related product management domains:
marketing, communication, legal, research, fi nance, etc.

It is equally essential to promote multi-disciplined collaboration
across organizational walls in product management. Th e capability
to adapt these parts of an organization leverages the use of Scrum
for enterprise agility. In a globalizing world of internal and external
unpredictability, adopting a mindset of empiricism and adaptiveness is
benefi cial to entire organizations.

Th e utilization of Scrum is not about renaming or slightly reworking
old techniques, techniques that are rooted in the industrial paradigm.
Product people are not being asked to hand over a list of User Stories
as a replacement for the old requirements documents. Nor does it
suffi ce for analysts to act as proxies for the product people if they lack
a mandate, stakeholder backing, budget responsibility and real user
accountability.

954 The future state of Scrum

Scrum Sprints are the core of overall business agility in generating
a continuous fl ow of improvements, learnings and various other
sources of value. In the end, an enterprise and its markets become a
self-balancing continuum, with players contributing across barriers,
domains, skills and functions. Organizations can discover, experiment
and deliver opportunities from an end-to-end perspective in the
fastest possible way.

4.3 THE UPSTREAM ADOPTION OF SCRUM
When adopting Scrum, the broader organization is impacted. Issues
that go beyond the Scrum Teams will come up and need to be taken
care of in order to gain the full benefi t of Scrum, to better facilitate
the Scrum Teams and thereby improve product development.
Organizational opportunities and improvement areas are discovered
through the application of Scrum.

Organizations wanting to use Scrum to make progress on their path to
agility should be aware that this will not be achieved by implementing
Scrum just for the sake of it. Scrum has the potential of being a tool to
be Agile at an organizational, enterprise level. Scrum is not designed
to be just a new IT process, but rather as a framework of rules, roles
and events to enable organizations to capitalize on the unforeseeable.
Scrum enables fast adaptation to follow the market and the competi-
tion (again).

A vast majority of organizations unfortunately act as if they still
reside in the land of Mediocristan. Th e characteristics for that ‘state’
of society, as described by Nassim Nicholas Taleb in his sublime
book ‘Th e Black Swan’ (Taleb, 2007), are that success has a direct
relationship to the hours or eff ort spent on non-scalable, repetitive
work. Taleb describes how Mediocristan has become an illusion
of the past, and has been replaced by Extremistan, where success

96 Scrum – A Pocket Guide

depends on the ‘production’ of ideas and the elaboration of the
unpredicted singularity. Scrum has what it takes to beam up the
inhabitants of Mediocristan to Extremistan so they become at least
‘a’ player in Extremistan, or even a leader, a giant. Scrum can be the
engine for adapting so fast that it’s up to your competitors to respond
to the change you cause. Leading the game comes within reach, to
outnumber the rest of the population, to be the giant.

But it starts with accepting, if not embracing, that we do live in
a market state of Extremistan. It starts with accepting that our
organizations must change not to fade. Th e fundamentals on which
they are constructed have been invalidated. Our iceberg is melting, is
the metaphor in the tale of Holger Rathgeber and renowned change
expert John P. Kotter (Kotter & Rathgeber, 2006). It is the cause of a
lack of upstream adoption for Scrum and it limits the benefi ts from
the game of Scrum, and undermines your future leadership, and even
survival.

In larger organizations, Scrum Teams and their Scrum Masters have
limited or no control over the formal delivery and release obligations
of soft ware products. Oft en teams have to operate on the basis of
compliancy expectations and ceremonial rules that have been designed
as part of the industrial paradigm. Th ey are being maintained beyond
the actual experiences of building products and lack of success. In
many cases they have grown out of step with the rapid evolutions that
are so typical for today’s markets, external circumstances and internal
organizational evolutions.

Nevertheless, the experience of Scrum in a vast majority of these
cases is excellent, and lives up to a sense of common sense. Th e
inhabitants of the house of Scrum appreciate Scrum because it thrives

974 The future state of Scrum

on and creates much enthusiasm. No surprise that this is exactly why
downstream adoption is generally huge.

One would expect that great results, good fi gures and increased
productivity lead to upstream success. Experience however contradicts
this expectation.

Your organization deserves active and explicit upstream support and
promotion of Scrum. Th ink about operational IT management, sales
divisions, delivery managers, product departments and hierarchical
CxO management.

It takes a sense of urgency, and the acceptance that there is indeed
urgency. It starts by accepting the confrontational truth that no
comfort, certainty and control will come from predictions. Comfort
comes from reality, from proven experience and empirical data instead
of static and gamed information. Th e traditional formalism has not
resulted in improved execution. Requirements change, unexpected
requirements appear, priorities shift .

Upstream adoption is a matter of management. Management is not
useless just because Scrum has no explicit role for them. Scrum neither
has prescriptions, artifacts, events or roles for lots of other interesting
and useful tasks or activities within organizations.

Th e goal of a lasting Scrum transformation as a step on the path to
Agility is to get managers involved in the game through a structured,
iterative-incremental change program. Such a program thrives upon
an urgency for improvement, thereby capitalizing on the bottom-up
enthusiasm that exists over Scrum. Such a change program doesn’t
address organizational areas in a waterfall-way. A typical waterfall

98 Scrum – A Pocket Guide

transition starts with an enterprise introducing Scrum and resolving
the problem of cross-functional teams fi rst. Th is oft en reveals a lack
of engineering facilities and support, so that domain is tackled next.
Aft er addressing the engineering area, an enterprise might want to
increase business involvement. And so on. Depending on the size of
the enterprise, it can easily take one to three years per area.

A change program to transform an organization to Scrum addresses
enterprise domains in parallel. Cross-functional change teams
implement small steps in the domains in parallel while the overall
eff ects of the steps are measured. Th e regular inspections of enterprise
or product-level measurements form the base for an informed
decision on the next steps and practices in the various domains. Th e
vertical silo-like departments become dimmed. Barriers get removed.
Communities emerge. Authority moves down the line. Accountability
grows. Agility occurs. But, remember Agility can’t be planned.

Customers,
Market,

Business value

People,
Organization,

Practices

Sales,
Finance,

Marketing

Engineering,
Quality,

Productivity

Scrum

Figure 4.1 Enterprise Scrum transformation

994 The future state of Scrum

The future state of Scrum will no longer be called ‘Scrum’. What we now call

Scrum will have become the norm, as the new paradigm for the software

industry has taken over and organizations have re-invented themselves

around it.

100 Scrum – A Pocket Guide

Annex A: Scrum vocabulary
and defi nitions

Burn-down Chart: a chart showing the evolution of remaining eff ort
against time.

Daily Scrum: daily, time-boxed event to re-plan the development work
during a Sprint. It serves for the Development Team to inspect the
daily progress and update the Sprint backlog.

Defi nition of done: a list of expectations that soft ware must live up to
in order to be released into production.

Development Team: the role within a Scrum Team accountable for
doing incremental development work, with the aim of creating a
releasable Increment every Sprint.

Emergence: the process of the coming into existence or prominence of
unforeseen facts or knowledge of a fact, a previously unknown fact, or
knowledge of a fact becoming visible unexpectedly.

Empiricism: a process control type in which decisions are based on
observation, experience and experimentation. Empiricism has three
pillars: transparency, inspection and adaptation.

102 Scrum – A Pocket Guide

Engineering standards: a set of development and technology stan-
dards that a Development Team applies to create releasable Increments
of soft ware.

Increment: a piece of working soft ware that adds to previously created
Increments, and -as a whole – forms a soft ware product.

Product Backlog: a list of the work to be done in order to create,
maintain and sustain a soft ware product.

Product Backlog refi nement: the activity in a Sprint through which
the Product Owner and the Development Team add granularity to
Product Backlog.

Product Owner: the role within a Scrum Team accountable for
incrementally managing and expressing business and functional
expectations for a product.

Scrum Master: the role within a Scrum Team that is accountable
for guiding, coaching, teaching and assisting a Scrum Team and its
environments in the proper use of Scrum.

Scrum Team: a team consisting of a Product Owner, Development
Team and Scrum Master.

Scrum Values: a set of fundamental values and qualities underpinning
the Scrum framework.

Sprint: time-boxed event that serves as a container for the other
Scrum events.

103Annex A: Scrum vocabulary and defi nitions

Sprint Backlog: an overview of the development work to realize the
Sprint’s goal.

Sprint Goal: a short phrase describing the purpose of a Sprint.

Sprint Planning: time-boxed event to start a Sprint. It serves for the
Scrum Team to inspect the work that’s most valuable to be done next
and design that work into Sprint backlog.

Sprint Retrospective: time-boxed event to end a Sprint. It serves for
the Scrum Team to inspect the past Sprint and update the process for
the next Sprint.

Sprint Review: time-boxed event to end the development work of a
Sprint. It serves for the Scrum Team and the stakeholders to inspect
the Increment resulting from the Sprint, the impact of overall progress
and update the Product backlog.

Stakeholder: a person external to the Scrum Team with a specifi c
interest in and knowledge of a product that is required for incremental
discovery.

Velocity: indication of the average amount of Product Backlog turned
into an Increment of product during a Sprint by a Scrum Team.

104 Scrum – A Pocket Guide

Annex B: References

Adkins, L. (2010). Coaching Agile Teams, A Companion for
ScrumMasters, Agile Coaches, and Project Managers in Transition.
Addison-Wesley.

Beck, K. (2000). Extreme Programming Explained – Embrace Change.
Addison-Wesley.

Beck, K., Beedle, M., v. Bennekum, A., Cockburn, A., Cunningham,
W., Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeff ries,
R., Kern, J., Marick, B., Martin, R. C., Mellor, S., Schwaber, K.,
Sutherland, J., Th omas, D. (February 2001). Manifesto for Agile
Soft ware Development. http://agilemanifesto.org/

Benefi eld, G. (2008). Rolling Out Agile at a Large Enterprise. HICSS’41
(Hawaii International Conference on Soft ware Systems).

Cockburn, A. (2002). Agile Soft ware Development. Addison-Wesley.
Giudice, D. L. (November 2011). Global Agile Soft ware Application

Development Online Survey. Forrester Research.
Hammond, J., West, D. (October 2009). Agile Application Lifecycle

Management. Forrester Research.
Kotter, J., Rathgeber, H. (2006). Our Iceberg Is Melting, Changing and

Succeeding Under Any Conditions. MacMillan.
Larman, C. (2004). Agile & Iterative Development, A Manager’s Guide.

Addison-Wesley.

106 Scrum – A Pocket Guide

Larman, C., Vodde, B. (2009). Lean Primer. http://www.leanprimer.
com

Moore, G. (1999). Crossing the Chasm, Marketing and Selling
Technology Products to Mainstream Customers (second edition).
Wiley.

Pink, D. (2009). Drive: Th e Surprising Truth About What Motivates Us.
Riverhead books.

Schwaber, K. (October 1995). SCRUM Soft ware Development Process.
Schwaber, K., Beedle, M. (2001). Agile Soft ware Development with

Scrum. Prentice Hall.
Schwaber, K., Sutherland, J. (April 2012). Soft ware in 30 Days: How

Agile Managers Beat the Odds, Delight Th eir Customers, and Leave
Competitors in the Dust. Wiley.

Schwaber, K., Sutherland, J. (July 2013). Th e Scrum Guide. Scrum.org.
Standish (2002). Keynote on Feature Usage in a Typical System at

XP2002 Congress by Jim Johnson, Chairman of the Standish
Group.

Standish (2011). Chaos Manifesto (Th e Laws of Chaos and the Chaos
100 Best PM Practices). Th e Standish Group International.

Sutherland, J. (-) Oopsla ’95 – Business Object Design and
Implementation Workshop. http://www.jeff sutherland.org/oopsla/
schwaber.html

Sutherland, J. (October 2011). Takeuchi and Nonaka: Th e Roots of
Scrum. http://scrum.jeff sutherland.com/2011/10/takeuchi-and-
nonaka-roots-of-scrum.html

Taleb, N. N. (2007). Th e Black Swan – Th e Impact of the Highly
Improbable. Random House.

Takeuchi, H., Nonaka, I. (January-February 1986). Th e New New
Product Development Game, Harvard Business Review.

Verheyen, G. (December 2011). Th e Blending Philosophies of Lean
and Agile. Scrum.org (http://www.scrum.org/Community/
Community-Publications)

107Annex B: References

Verheyen, G., Arooni, A. (December 2012). ING, Capturing Agility via
Scrum at a large Dutch bank.

VersionOne (2011). State of Agile Survey. 6th Annual. VersionOne Inc.
VersionOne (2013). 7th Annul State of Agile Development Survey.

VersionOne Inc.
Wiefels, P. (2002). Th e Chasm Companion. A Fieldbook to Crossing the

Chasm and Inside the Tornado. Wiley.

108 Scrum – A Pocket Guide

About the author

 Gunther Verheyen (gunther.verheyen@mac.com)
is a longtime Scrum practitioner. Aft er a
career as a consultant, he started shepherding
the Professional series of Scrum.org in 2013,
while also leading its European operations. As
from 2016 Gunther is furthering his path as an
independent Scrum caretaker.

 Gunther ventured into IT and soft ware development aft er graduating
in 1992. His Agile journey started with eXtreme Programming and
Scrum in 2003. Years of dedication followed, years of using Scrum in
diverse circumstances. As from 2010 Gunther became the inspiring
force behind some large-scale enterprise transformations. He is a
Professional Scrum Trainer with Scrum.org.

Gunther left consulting in 2013 to partner with Ken Schwaber, Scrum
co-creator, at Scrum.org. He became the representative of Ken and
Scrum.org in Europe, shepherded the ‘Professional Scrum’ series,
 worked with Scrum.org’s global network of Professional Scrum
Trainers, and is co-creator to Agility Path and the Nexus framework
for Scaled Professional Scrum.

110 Scrum – A Pocket Guide

 Gunther left Scrum.org in 2016 to continue his journey of Scrum as an
independent Scrum caretaker.

 In 2013 Gunther published the acclaimed book “Scrum – A Pocket
Guide (a smart travel companion)”. Ken Schwaber recommends his
book as ‘the best description of Scrum currently available’ and ‘an
extraordinarily competent book’. In 2016 the Dutch translation of
his book was published as “Scrum Wegwijzer (Een kompas voor de
bewuste reiziger)”.

 When not travelling for Scrum and humanizing the workplace,
Gunther lives and works in Antwerp (Belgium).

Find Gunther on LinkedIn at https://www.linkedin.com/in/ullizee, on
Twitter as https://twitter.com/ullizee or read more of his musings on
Scrum on his blog, https://guntherverheyen.com/.

About Scrum.org
Scrum.org leads the evolution and maturity of
Scrum to improve the profession of soft ware
development, up to the level of the enterprise

agility of organizations.
Scrum.org strives to provide all of the tools and resources needed
by Scrum practitioners and experts in agility to deliver value using
Scrum. In close collaboration with Jeff Sutherland, Scrum.org
maintains the Scrum Guide in 30 languages. Scrum.org provides
Scrum assessments to allow people to evaluate themselves and
improve, hosts community forums and webcasts to foster discussion
and knowledge transfer, and defi nes industry-leading Scrum training
for practitioners at all levels. All these are part of the overall view
of Scrum.org on enterprise agility as covered by the ‘Agility Path’
framework.

Scrum.org
People . Agility . Value

1114 About the author

Scrum.org was founded in 2009 by Ken Schwaber, one of the creators
of Scrum, along with Alex Armstrong, out of extreme dissatisfaction
with the state of the art of soft ware development.
Scrum.org is based in Boston, Massachusetts (USA).

“Scrum is free. Scrum’s roles, artifacts, events, and rules are immutable
and although implementing only parts of Scrum is possible, the result
is not Scrum. Scrum exists only in its entirety and functions well as

a container for other techniques, methodologies, and practices.”

(Ken Schwaber, Jeff Sutherland, Th e Scrum Guide)

	Página en blanco
	Página en blanco

