
Understanding
Agile Values & Principles

Scott Duncan

AN EXAMINATION OF THE AGILE MANIFESTO

Understanding Agile Values &
 Principles

Scott Duncan

S
cott D

u
n

can

Understanding
Agile Values & Principles

5238707803599

ISBN 978-0-359-52387-0
90000

Many organizations start their Agile journey without a good (or any)
coverage of the Agile Manifesto’s Values and Principles. As a result,
when Agile practices seem difficult to implement, this limited under-
standing often prevents choosing alternatives consistent with an
agile mindset. Agile ideas are simple but not necessarily easy. This
book explores each value and principle, suggesting possible practices
to help make it easier to implement practice options and alternatives.

Scott Duncan has 47 years in software including book sales
and distribution, state government, mainframe database and
natural language query products, telecom, credit card
transaction processing, and banking. Most recently he was
worldwide enterprise coach/trainer for 144 Scrum teams
developing software to design, build and operate power and
processing plants, oil platforms, and ships. Currently, he
coaches as well as conducts ICAgile certified training.

ENTERPRISE SOFTWARE
DEVELOPMENT SERIES

Understanding Agile Values & Principles
© 2019 Scott Duncan. All rights reserved.

Published by C4Media, publisher of InfoQ.com.

ISBN: 978-0-359-52387-0

No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recoding, scanning or otherwise except
as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the Publisher.

Production Editor: Ana Ciobotaru
Copy Editor: Lawrence Nyveen
Design: Dragos Balasoiu

Contents

An Overview ..5
The Agile Manifesto ...6
Not just for software ..9
The next chapter ..9

Fundamental Considerations ...11
Communication .. 12
Collaboration ... 13
Commitment ... 14
Continuous improvement.. 15
Trust ... 16
Excellence ... 16

Individuals and Interactions ..17
Individuals and interactions .. 18
Processes and tools .. 19
Committing to interaction .. 20
An experiment ... 20

Working Software ...21
Communicating with the software ... 23
Comprehensive Documentation .. 24

Customer Collaboration ...27
Contract negotiation ... 29

Responding to Change ...31
Following a plan .. 33

Satisfy the Customer ..35
Our highest priority ... 36
Early and continuous .. 37
Valuable software.. 37

Welcome Change ...41
Customer’s competitive advantage ... 42
Welcome changing requirements .. 42
Late in development .. 44

Deliver Frequently ...45
Deliver working software frequently ... 46
From a couple of weeks to a couple of months.. 46
With a preference to the shorter timescale ... 46
Why the short iterations? ... 47

Working Together ...49
Business people and developers ... 50
Work together daily ... 50
Throughout the project .. 51

Motivated Individuals ..53
Motivated individuals ... 54
Environment and support.. 54
Trust them .. 55

Face-to-Face Conversation ..57
Modes of communication .. 58
Distributed teams ... 61
Dealing with distribution ... 62
Daily meetings ... 64
Iteration reviews ... 65

Working Software… Again? ..67
Measuring progress ... 68
Burn-up chart .. 69
Definition of done .. 70

Sustainable Development ...73
Sustainable development .. 74
Constant pace indefinitely ... 74

Technical Excellence ..77
Continuous attention .. 78
Technical excellence... 78
Good design ... 79
Enhances agility .. 80

Simplicity ...81

Self-Organizing Teams ..83
The best ... 84
Self-organizing teams.. 84

Team Reflection ..87
Regular intervals ... 88
The team ... 89
Become more effective .. 90
Tune and adjust ... 90
Retrospective “smells” ... 91
Some retrospective ideas .. 92
What next? .. 98

Epilogue ..99
One older and two recent perspectives .. 99

Further Reading ..105

About the Author ..107

Foreword

Agile was founded on a set of values and principles in a short document
known as the Agile Manifesto. To implement these agile values and prin-
ciples, teams follow certain practices, such as writing user stories or doing
pair programming.

In the early days of agile, I remember participating in many raging de-
bates about whether principles or practices should come first. That is, if
a team followed a set of practices long enough and well enough, would
team members come to learn the principles underlying those practices?
Or was it necessary for teams to start with a solid understanding of the
principles of agile before implementing its practices?

These debates often raged at the early agile conferences and Scrum gath-
erings. I met Scott at one of these conferences: the Agile Development
Conference in Salt Lake City in 2004.

In the ensuing 15 years, I have been consistently impressed with Scott’s
mastery of agile. When he weighs in on the question of principles versus
practices, as he does in this book, we all benefit.

In Understanding Agile Values and Principles, Scott analyzes each of the 12
principles and four value statements of the Agile Manifesto. Along the
way he explains the intent and importance of each. But he also describes
how teams may struggle to put a principle or value into practice. And he
offers practical, ready-to-use advice on living the principles and values of
the Agile Manifesto.

The Agile Manifesto fits on one page. But, as short and concise as it is,
much is left open to debate and interpretation. Those debates will nev-
er — and probably should never — stop. It is through discussing what it
means to be agile that we uncover better ways of developing software.
Scott’s thoughts and advice in this book represent a significant step in
forwarding that discussion.

Mike Cohn
Co-founder of the Scrum Alliance and Agile Alliance
Author of User Stories Applied, Agile Estimating and Planning,
and Succeeding with Agile
www.mountaingoatsoftware.com
www.agilementors.com/

https://www.mountaingoatsoftware.com/
https://www.agilementors.com/

Other Comments on the Book

“Whenever I engage with people who are looking to practice agile, my
first goal is to ensure they understand the core agile values and principles.
This is the foundational “why” that underlies the practices in a framework
like Scrum. Without first establishing this core, practitioners will not be
well equipped to inspect and adapt their approaches to practicing Scrum.
Scott has provided important commentary on and elaboration of the val-
ues and principles in the Agile Manifesto. This is a good read whether you
are an agile novice or an experienced practitioner.”

- Ken Rubin author of Essential Scrum: A Practical Guide to the Most Pop-
ular Agile Process and creator of the Visual AGILExicon® (https://innolu-
tion.com/)

“Scott Duncan has written an interesting and valuable book. He works
through all the values and principles of the Agile Manifesto, considering
each phrase and its implications for an individual or organization inter-
ested in taking an Agile approach to their work. This is in sharp contrast
to almost all the other Agile advice you’ll find: Scott has no particular
framework or product, no particular axe to grind. The book is essentially
a series of short meditations on each of the ideas in the Manifesto. He
leads us through a clear and comprehensive look at the Manifesto and
what it really means to those of us who try to apply it in our work and
lives. Highly recommended!”

- Ron Jeffries, co-author of the Agile Manifesto and author of The Nature
of Software Development: Keep It Simple, Make It Valuable, Build It Piece by
Piece (https://ronjeffries.com/)

http://www.innolution.com/resources/val-home-page/?utm_source=Krubin_Email&utm_campaign=Krubin_Email_1&utm_medium=email
https://innolution.com/
https://innolution.com/
https://ronjeffries.com/

Preface

Many years ago I began what I planned to be a much larger book with
this same title. I felt that many organizations I had been working with had
started their Agile journey without a good (or any) coverage of the Agile
Manifesto’s Values and Principles. The book was too grand an effort and
I put it aside. However, over the years, my concern for the lack of organi-
zational knowledge of the Agile Values and Principles has not lessened. If
anything, it has grown. I decided about a year ago to put up some essays
on Medium.com and that turned out to be the precursor to this book.

People talk of “being” agile rather than just “doing” agile and, someday,
that longer book may get done and be about the latter. This book, how-
ever, tries to be about the former with enough examples of “doing” to
illustrate how one might behave if they were “being” agile.

I would not have gotten to this point, though, without many people who
have influenced my thinking about Agile software development. Since I
first read eXtreme Programming Explained in 2002, there have been enough
people that I doubt I could never list all of them. And before that for about
25 years, even more people influenced how I viewed traditional software
development/engineering topics.

Acknowledgements

I would like to thank a few people specifically for reading the draft of this
book and for their comments about it:

First, knowing him for about 15 years, and since he (along with Ken
Schwaber) was my CSM trainer, I want to thank Mike Cohn. I have had
the pleasure of being at conferences with Mike, taking classes from him,
working on the Scrum Alliance Board of Directors with him, and partic-
ipating in his Agile Mentors Community. I also had the opportunity to
read and comment upon the draft of his Succeeding with Agile book.

Second, knowing him almost as long as Mike, I want to thank Ron Jeffries
for looking through the draft of this book. Over the years I have enjoyed
presentations he has given on Agile development practices and his ear-
ly writing on eXtreme Programming practices. Before I learned about
Scrum, Ron’s (and Kent Beck’s) work on XP was my introduction to Agile
practice once I encountered the Agile Manifesto.

Third, I want to thank Ken Rubin for the opportunity to read an early
draft of his book Essential Agile and, now, for his suggestions for improve-
ments to this book (which I’ll do a better job with on the next book) and
his overall perspective on it.

There are many others whose work and insights have helped me along my
personal Agile journey:

Jurgen Appelo, Lyssa Adkins, and Barry Boehm & Richard Turner were
others who allowed me an early look at their books;

Kent Beck, of course, through his eXtreme Programming Explained, pushed
me in the direction that has led me to this point in my career;

Alistair Cockburn has always added to my appreciation for thinking in an
Agile way every time I have read what he has written or heard him speak;

Then there have been people such as Mary & Tom Poppendieck, Robert
Galen, Roman Pichler, Brian Marick, David Anderson, Ken Schwaber, Jeff
Sutherland, Scott Ambler, and a host of people whose books, conference
talks, blogs, and videos have offered me guidance over the years.

And, before I encountered the Agile Manifesto, during my ‘phased se-
quential” days, especially 14 years in the Bell environment, there was the
work of Barry Boehm, Tom DeMarco, David Parnas, Gerry Weinberg,
and Fred Brooks to mention just a few.

Finally, my thanks to:

Ben Linders who showed the initial interest in getting this book published
and has offered much help along the way;

Lawrence Nyveen for his editorial review;

Ana Ciobotaru and Dragos Balasoiu for their work on the cover of this
book and other publishing details.

PART 1
An Overview

UNDERSTANDING AGILE VALUES & PRINCIPLES

6

I have been coaching and training teams in agile approaches to software
development for over 13 years. During this time, many frameworks and
practices have been proposed and used. In my experience, one thing
seems clear: as framework-specific training has increased, many of those
trained seem to have limited familiarity with the Agile Manifesto’s val-
ues and principles (http://agilemanifesto.org). As a result, people tend to
return to what they had been doing previously when practices advocat-
ed during training have been difficult or not possible to implement. This
often seems to occur without reference to the values and principles to
consider how some alternative might be selected that more closely ad-
heres to them. I believe it is the limited understanding of the values and
principles that excludes them from people’s thinking when choosing al-
ternative practices.

It is for this reason that I offer my thoughts on what an understanding
of the values and principles could mean to an organization. Such under-
standing will make it easier to pursue an agile approach successfully by
using the values and principles as a reference point when considering
practice alternatives. As many have pointed out, agile ideas are quite sim-
ple but not necessarily easy to implement. While based on ideas with a
lineage that goes back at least to the middle of the last century, they form
a set of reinforcing ideas intended to be used together, not piecemeal.

I will take each value and principle and explore what I believe it can mean,
suggesting along the way a variety of possible practices and consider-
ations that could help implement each one.

To begin, this overview will address the Agile Manifesto as a whole. The
next chapter will address fundamental considerations basic to an effective
group work situation, but especially important for being agile: communi-
cation, collaboration, commitment, continuous improvement, trust, and
excellence. After that, each value and principle will have a chapter dedi-
cated to addressing it.

The Agile Manifesto
What’s covered below are three components of the manifesto that bear
on how one understands the value statements: the initial two statements,
the final statement, and the preposition. Early reactions to the manifesto

AN OVERVIEW

7

often sounded as if they misunderstood or even ignored the preposition
and final statement.

The initial statements
The Agile Manifesto’s first paragraph is “We are uncovering better ways
of developing software by doing it and helping others do it. Through this
work we have come to value:”. All the people at the meeting that created
the manifesto had direct experience developing software. No one was a
pure academic or researcher. What one finds in the manifesto, therefore,
is based on practical, not theoretical, experience. Those in attendance
stated they felt this experience had led them to believe four key things:
the values.

The final statement
I remember reading articles back in the early 2000s in which people sug-
gested or outright said that the manifesto authors advocated no process or
tools, no documentation, no contracts, and no planning. Such overt state-
ments ended some time ago, but you may hear this same sense expressed
in statements like, “You can’t possibly do <some aspect of development>
without <some particular processes, tools, documentation, contracts,
or plans>.” Of course, the manifesto doesn’t say you should do without
these things. The final statement says “That is, while there is value in the
items on the right, we value the items on the left more.” The manifesto
acknowledges value in processes, tools, documentation, contracts, and
plans while saying that the authors believe there is greater importance in
individuals and interactions, working software, customer collaboration,
and responding to change. Understanding matters of degree are therefore
important.

The preposition
Note that the word forming the connective link in each value statement is
“over.” It is not “instead of”, “to the exclusion of”, “without”, or some other
exclusionary form. The word “over” implies a precedence, not an exclu-
sionary relationship, within each value statement.

If an organization has difficulty:

• with individuals interacting effectively, then more, or more rigorous
adherence to, process and tools probably won’t help;

UNDERSTANDING AGILE VALUES & PRINCIPLES

8

• producing working software regularly, then more, or more detailed,
documentation probably won’t help;

• collaborating with customers positively, then more rigorous con-
tracts probably won’t help; and

• responding to change directly, then more, or more rigorous adher-
ence to, plans probably won’t help.

• Looked at another way:
• Processes and tools should help individuals interact more effectively.
• Documentation should help achieve working software more regular-

ly.
• Contracts should be written to help collaborate with customers more

positively.
• Plans and planning should help the ability to respond to change more

directly.

Stated this way, if the former cannot help achieve the latter, then the for-
mer become impediments to success.

Since the manifesto
Over the years, people have proposed updating the Agile Manifesto to ad-
dress things they felt the original authors missed or were now out of date.
I also heard someone once claim that the manifesto was “content-free”,
by which he meant that it was easy to agree with without committing to
anything specific. Who wouldn’t want effective interaction between peo-
ple, software that works, collaboration with customers, and being able to
respond to change? But as I have heard (and read) at least one author of
the manifesto say, it was a statement of what those 17 people in the room
during those four days in 2001 believed at that time. As such, the Agile
Manifesto (or any manifesto) isn’t something you update.

New ideas will appear and be pursued and can offer useful guidance to
what to consider in becoming and pursuing agile. In particular, two in-
teresting ways to think about what it means to be and to pursue agile are
Alistair Cockburn’s Heart of Agile and Joshua Kerievsky’s Modern Agile.
I will come back to these two at the end of the book as well as mention
comments made by Kent Beck in 2010.

https://heartofagile.com
http://modernagile.org/

AN OVERVIEW

9

Not just for software
One final point before ending this introduction is that the manifesto’s val-
ues and principles easily apply to any activity where people need to work
in some way to produce some end product or service. If one replaces the
word “software” with “product or service”, I believe the values and princi-
ples retain their validity.

At an agile conference held several years after the manifesto had achieved
broader visibility, I heard someone bemoan the attempt to apply agile
outside the realm of software. They seemed to feel that agile, coming from
the field of software and having many early practices rooted in software,
would be diluted by efforts to apply it in other domains. I believe dilution
of agile ideas occurs not from applying them in other domains but from
people not using them as a touchstone for becoming agile regardless of
frameworks and practices.

The next chapter
Hopefully, this overview will interest you in reading further. The next
chapter will address the fundamental considerations of communication,
collaboration, commitment, continuous improvement, trust, and excel-
lence noted above.

PART 2
Fundamental

Considerations

UNDERSTANDING AGILE VALUES & PRINCIPLES

12

In Chapter 1, I mentioned several ideas which I called “fundamental.” It
seems hard to expect an organization (or a group or an individual) to be-
come (more) agile without them. As noted in Part 1, all these consider-
ations are important for any work situation, but seem essential for being
agile. Being agile, as many have said, is more important than “doing” agile.
That is, understanding how to apply the values and principles is more im-
portant than specific practices. Practices, of course, must exist, and there
are many ways to “do” agile. But perhaps, there is a narrower set of choic-
es in “being” agile.

Communication
Every value in the manifesto is affected by communication, though the
forms differ:

• It seems impossible to expect positive interaction between individu-
als without effective communication. This requires an openness and
willingness to bring visibility to the relationship. It means having to
risk being wrong in front of people if ideas and information are going
to flow freely back and forth. It means asking more than telling and
being inclusive (“we”) rather than accusative (“you”).

• Achieving working software certainly requires effective communi-
cation between people, but also between the software itself and those
people. This requires design, development, and testing practices that
expose what is happening with the software at any stage in its cre-
ation. Being able to know the stability of your system at any moment
encourages experimentation, builds trust, clarifies quality, and makes
change less risky.

• As positive collaboration with customers (or any stakeholders) is
just a specific instance of individuals interacting, it would seem to
go without saying that this requires effective communication. But
it is a two-way obligation. Customers must realize that, to get the
benefit from an agile approach, they must involve themselves in the
approach at various points, providing feedback and clarification, and
even guidance when needed.

• Finally, it is hard to imagine responding well to change without effec-
tive communication between all those who need to know about, have
valuable insight into, and will be affected by such change. Discussions

FUNDAMENTAL CONSIDERATIONS

13

of scope flexibility and the impacts of change should include custom-
ers and development organizations.

Most development trouble occurs because communication is not effec-
tive.

Collaboration
Collaboration is certainly an aspect of effective communication. Many
people working in teams believe they are collaborating when they are
probably just cooperating. There is nothing wrong with cooperation, but
collaboration goes beyond cooperating. One can cooperate without col-
laborating.

To “co-operate” literally means to operate together, to function in con-
junction with, which can occur with limited interaction. Individuals can
have their own work assignments, work to get them done, and be willing
to help out others when they can. But they can essentially focus on what
they feel they must accomplish individually, expecting others to do the
same. People can cooperate without assuming any responsibility for any
work other than their own.

To “col-laborate” literally means to work together. It involves deliberately
sharing work, and responsibility for the work, involved in getting some-
thing done. This means structuring tasks so people work closely with one
another to accomplish planning, estimation, commitment, development,
and testing. It also means communication must be more direct and fre-
quent, which cooperation doesn’t necessarily demand.

Collaboration’s connection to individual interactions and working with
customers seems clear. Achieving working software and responding to
change are slightly more indirect, but not much. Achieving both occurs
more effectively when collaboration, not just cooperation, exists. Achiev-
ing working software can be much harder (if not confounded) when there
is a hand-off mentality between skill silos.

Likewise, response to change may be less effective without a collabora-
tive stance. People, without intending any negative impact on others, can
sub-optimize the change in a way that improves (or maintains) their own
situation while sometimes making other people’s situations worse.

UNDERSTANDING AGILE VALUES & PRINCIPLES

14

For example, you’ve probably been in a situation where departments in a
company have been told to cut their budget by some percentage for the
coming year. In one instance I experienced, IT support rightly pointed
out that a lot of money was being spent supporting many versions of
desktop machines used both for actual development and for basic admin-
istrative and office activities. Clerical support staff were using powerful
engineering workstations, Macs, and Windows PCs to simply maintain
management file systems, budget records, presentations, and memos.

IT Support noted that, unless required for development, one standard
desktop environment should be used. Windows 3.4 and relatively inex-
pensive PCs became the approved environment when development was
not a consideration. This also reduced costs since support personnel for
such an environment were more plentiful and less expensive than for the
other environments. After converting many people, including all man-
agement support staff, a serious, undocumented bug was exposed that
took a couple weeks to track down (by technical staff other than IT Sup-
port) and another (the same technical staff) to correct the consequences of
once identified. Hundreds were affected, including management whose
files had temporarily “disappeared,” the cost of which was never formally
recorded, but IT Support could show their budget was reduced by the
required percentage.

Commitment
Communication and collaboration are more easily improved when peo-
ple see commitment from one another to achieve the work before them.
In turn, that commitment is more easily accepted when effective com-
munication and collaboration exist. It’s a bit of a circle of course, though
not a vicious one. One requirement, however, is that the people doing the
work take on and make their own commitments. These should not be im-
posed on them. More will be said about this when self-organizing teams
are addressed in a later chapter. However, people should, for example:

• make their own estimates of the work to be done;
• define their own work tasks and who will/can do them;
• agree on shared working agreements, including quality standards

and practices; and
• manage and track their own progress toward completing the work.

FUNDAMENTAL CONSIDERATIONS

15

People doing these things together, closely communicating, will more
easily feel that the commitments are truly theirs, motivating them to
achieve, even exceed, them. People want the opportunity to take pride in
their work and commit to it. (Deming pointed this out in his work with
the Japanese after WWII and documented it in 1982 in his book Quality,
Productivity, and Competitive Position, later renamed Out of the Crisis in
1986.)

Continuous improvement
Perhaps nothing is more important in being agile than the pursuit of
continuous improvement. Indeed, the basic agile lifecycle instantiates
this through the retrospective held at the completion of every iteration
of work. Unfortunately, it is sometimes a skipped step in that lifecycle,
trailing planning and daily meetings in frequency according to Version-
One surveys.

A variety of things may contribute to this, but a key one is that while peo-
ple come up with ideas for improvement, nothing ever changes or hap-
pens to those ideas. Unfortunately, after making lists of possible changes,
people do not treat the ideas as serious work items. The ideas do not get
prioritized, estimated, or committed to actual work effort in the next it-
eration. Thus, the next retrospective occurs, and the same ideas are raised
again.

Another reason is that people don’t feel there is time to conduct the retro-
spective given pressure to get going on the next set of customer require-
ments. Clearly, the time and effort to carry out improvement should show
benefit but it cannot if people aren’t given, or don’t feel they can afford,
the time to try.

Finally, I’ve heard people say, “Everything went fine this iteration so
there is nothing to fix.” The retrospective is about improvement, not
just “fixing” things. Unless a team never generates any defects, is always
completely accurate in its estimates, and is completely productive, there
is always something that can be improved. It doesn’t have to be a huge
change. It’s about continuous improvement as a habit (i.e., what in lean
terms is called kaizen). All the values and principles of the Agile Manifesto
can probably be more effectively implemented in one way or another in
any organization.

http://stateofagile.versionone.com/
http://stateofagile.versionone.com/

UNDERSTANDING AGILE VALUES & PRINCIPLES

16

Trust
It’s has been said that trust is earned in pennies and lost in dollars, i.e.,
hard to come by but easy to lose. Probably nothing destroys a group’s
effectiveness more than lack of trust within the group or by those around
it. Unfortunately, typical project management practices are often based
on or conducted in some aspect of a lack of trust. But without trust, open
communication and collaboration just won’t happen. People will not pur-
sue new ideas or attempt new ways of working if they do not feel they can
expect support from others when they do.

Of course, it has also been said that “In God we trust; everyone else brings
data,” “Trust in God but tie up your camel,” and “Trust, but confirm.” Trust
does not exist between people automatically. People may presume trust
until some problem surfaces, then begin finger-pointing among one an-
other. It is difficult to truly trust someone with whom you have had no
positive working experience, that is, have no “data” upon which that pre-
sumption exists. Effective, deliberate communication, collaboration and
commitment from the very outset of people working together provide
that “data,” contributing strongly to creating such trust.

Excellence
Finally, there is the desire to achieve excellence. We cannot assume excel-
lence from everyone, but we can expect them to pursue it, collaboratively,
using continuous improvement. True excellence may be (or at least seem
to be) a distant target, but pursuit of it is certainly reasonable. Often the
problem is deciding what excellence means in a group’s work and how to
pursue it. Established group working agreements and quality practices
along with use of the retrospective should make such decisions easier,
building trust at the same time.

PART 3
Individuals and

Interactions

UNDERSTANDING AGILE VALUES & PRINCIPLES

18

This chapter begins a set of four chapters, each focusing on one of the
Agile Manifesto’s value statements.

Individuals and interactions
I think anyone who has worked with others — be it at work, on a ser-
vice project, for a local community group, or even a family effort — would
agree that the interactions of the individuals within the group had the
biggest impact on the result. If there is effective communication, collab-
oration, and trust among people in such situations, they are likely able
to overcome many limitations in process, environment, and tools. Those
who supervise or manage such efforts should make it a priority to see
that such communication, collaboration, and trust exists and that they, as
supervisors or managers, protect and encourage that existence.

But a major challenge to doing this in a work environment is that so many
teams are distributed. Indeed, I have not worked as a coach or trainer
for any company in over a decade that did not have distributed teams.
The sixth principle says that “The most efficient and effective method of
conveying information to and within a development team is face-to-face
conversation.” However, co-located teams are frequently not the default
occurrence. While I’ll address distributed teams throughout future chap-
ters, this value is certainly an appropriate place to start, given how dis-
tribution creates challenges for communication, collaboration, and trust.

Most people think of distribution as a matter of distance (and, hence,
time). Alistair Cockburn, in Chapter 3 of his book, Agile Software Devel-
opment, notes that what matters is “is the amount of energy it takes” to
pass ideas between people. Direct, face-to-face communication between
people can be discouraged at amazingly short distances, e.g., perhaps 30
meters. If the energy and time it takes to stop what you are doing, get up,
and go to another person is perceived as too great, people will simply
not do so. They will communicate as if they were miles, even continents
apart, using various forms of text-based methods. (Interestingly, people
who recognize distribution across large distances and time use technolo-
gy that allows them to see one another (e.g., Skype, Google Hangout, We-
bex, etc.), but might never think to do this more locally when disinclined
to get up and go to visit another person.)

INDIVIDUALS AND INTERACTIONS

19

Paper
Audiotape

Videotape

2 people
on email

2 people
on phone

2 people
at whiteboard

CO
M

M
UN

IC
AT

IO
N

EF
FE

CT
IV

EN
ES

S

RICHNESS (”TEMPERATURE”) OF COMMUNICATION CHANNEL(cold) (hot)

NO QUESTION - ANSWER

QUESTION AND ANSWER

Cockburn notes that this figure from his book captures “the findings of
researchers, such as McCarthy and Monk (1994)” in Measuring the Qual-
ity of Computer-Mediated Communication. There’s more to say about it
in Chapter 12, when the sixth principle is discussed. For now, a couple
things can be pointed out.

The vertical axis indicates how effective the mode is in communicating
information while the horizontal axis indicates the impact of the commu-
nication. Together, they show how little time and energy the modes take
to communicate information between people as we go right and up along
the axes. Note where purely text-based documentation sits (“Paper” on
the diagram) compared to face to face (“2 people at whiteboard”).

Processes and tools
Many tools, of course, allow people to open them up and look at the status
of team work whenever they want to know something or when the tool
alerts them that something has happened.

UNDERSTANDING AGILE VALUES & PRINCIPLES

20

Committing to interaction
What’s important is that there is the commitment to interaction, to com-
munication, to a whole team atmosphere. Rather than finding it too hard
to do this, falling back on exchanging documents, and splitting up work
so people do not have to interact, look for ways people can share the work
— actually collaborate not just cooperate. According to one of Version-
One’s annual surveys, only about 20% of respondents say they looked for
agile to help them better manage distributed teams, while 61% of them
said that, in fact, that turned out to be a benefit of adopting agile. I believe
this is because of a commitment to making communication work among
team members and between teams. It’s a challenge whether you are dis-
tributed or co-located but being agile expects this of us.

An experiment
Here’s a thought experiment (or perhaps an actual exercise you can do
with a group of people). Think of some very positive experience you have
had working with a group of people. Write down the characteristics of
that experience that make it so positive in your memory. Now categorize
them as:

• people — interactions between you and individuals in the group;
• culture — the overall group/organizational assumptions, agreements,

attitudes and expectations;
• process — the way(s) the group organized the work you did and car-

ried it out;
• environment — the actual physical environment in which you

worked; or
• tools — the tools (manual or electronic) you used to get the work done.

Now look at the pattern created by grouping your memories of that ex-
perience. Where do those characteristics fall in the groupings? (If you do
this with a whole group, write the ideas on notecards or stickies and put
them up on a board/wall with the headings listed so everyone can see the
total set of groupings.) What does this tell you about why the experience
was memorable?

PART 4
Working Software

UNDERSTANDING AGILE VALUES & PRINCIPLES

22

Who wants software that doesn’t work? But what does it mean that it
works? It shouldn’t have any defects, right? It should have been fully test-
ed, correct? The agile approach to quality expects that at the end of every
iteration of work, the team feels the software is of production quality.
That is, if it could be put into production, the team would not worry about
it failing to meet customer expectations. They are confident in the quality
of what they have produced and not just based on being defect-free.

To be fully useful in production, all associated user guides, installation
procedures, help-system entries, etc. should also be completed. Without
them, it may not be possible to use the software even if there were no
defects. The software wouldn’t “work” from the end-users’ perspective if
they could not use it regardless of how defect-free it might be. From an
agile perspective, the “software” includes that necessary user documenta-
tion. Such of documentation is considered part of what must “work,” as
well as the code itself.

But sticking just to the code, what must work? Let’s look at a simple ex-
ample of what a customer might request:

“As a banking customer, I want a list of all my accounts and balances so I
can manage my finances.”

Seems like a simple enough request, but let’s add some acceptance crite-
ria. These are often referred to as conditions of satisfaction (CoS).

• I want the list to be a pop-up list I can request from anywhere in the
system.

• If the list exceeds 20 items, I want it to scroll.
• I want the list sorted by account type or balance.
• I want to be able to select to sort by balance then by account if I want.
• I want to be able to see due dates and required payments on debt ac-

counts (e.g., credit cards, loans).
• I want to sort by either due date or required payment if I have those

showing.
• I want to add other fields to each item such as <imagine a few others>.
• I want to filter the list by account type, balance, due date, or required

payment to shorten a long list.
• I’d like to be able to search the list.

Does the software “work” if any of the Conditions of Satisfaction don’t
work or exist? If we implement the basic request and verify that works,

WORKING SOFTWARE

23

then implement each CoS, verifying they each work as we add them, does
the software “work” at each point along the way? From a code quality
perspective, it could be said that it does. What if a customer will take a
useful subset of all the CoS because that subset will “work” for them in
the near-term. They’d prefer to get a useful increment sooner rather than
later. Everything they asked for initially isn’t there, but enough is to make
it useful. Later, they’ll get more of the things they requested.

To start, then, the team could (depending on the length of the iteration)
provide the first three capabilities, then add the next two in the next iter-
ation, then the sixth one in the following iteration, etc. At the end of each
iteration, new functionality could be put into production as the customer,
incrementally, gets more useful software.

Discussing what makes the software minimally viable in this way can lead
to customers getting something useful rather than waiting for everything.
This is part of the agile idea of ordering the work based on customer value
and working to deliver high-value results soon and frequently during a
release/project cycle. It puts the decision about what constitutes a viable
release in the hands of the customer/business and not in the hands of the
development team. The team just keeps adding the next-highest-valued
functionality and the customer says when it’s useful enough to be a re-
lease.

Communicating with the software
The importance of effective communication between customer and de-
velopment is clear. What about effective communication with the soft-
ware itself? People can communicate with the software simply by using it
in some way. The software responds by performing as expected, or not.
This begins with how the team verifies and validates the software through
forms of inspection and testing. Then the team’s product owner or cus-
tomer can try the software to see how it works. Done frequently enough,
this communication will reduce risk by uncovering defects or new func-
tionality requests early, before they become too expensive, increasing
customer satisfaction with the results.

The company Menlo Innovations likes to have a customer representative
present with their developers throughout the process of creating the soft-
ware for that customer. At the end of each week, when the team shows

UNDERSTANDING AGILE VALUES & PRINCIPLES

24

what they have accomplished, they like the customer representative to
demo the working software. That person was there all week discussing
the functionality with the developers, seeing it developed, and helping
verify it. If they cannot show how it works, something must have gone
wrong in the relationship during the week and that needs to be addressed.

Implementing small pieces of functionality, verifying they are correct,
and validating that they satisfy the customer’s expectations is the essence
of agile development. When starting to work in an agile fashion, this pro-
cess can be hard because people are used to long(er) development cycles
and think in terms of large(r) pieces of functionality. Getting the customer
(or business) to think in smaller pieces of functionality and smaller release
cycles will take time, but is essential to get working software into produc-
tion sooner rather than wait a long time to get everything, with all the
details completed.

I observed a team that worked very hard to break functionality down into
pieces that could be completed (including user-relevant documentation)
in just a few days rather than take a few weeks to get all of it done. This
increased collaboration between developers, quality analysts and tech
writers, making collaboration easier. It also resulted in the team spending
little time estimating the work. Everything was such a small effort that
they just called everything 2 points (using the Fibonacci story point scale).
They spent their time breaking stories down — which was the important
thing to be able to develop, test, and deliver frequently — eliminating esti-
mation effort almost completely.

Comprehensive Documentation
User manuals, installation guides, help systems, etc. are considered part
of the “software” from an Agile perspective. The “comprehensive” docu-
mentation this value mentions is internal, system forms of documenta-
tion which are often not used once a project/release is completed. The
argument can certainly be made that detailed documentation is import-
ant for historical reasons, but it may not be the best way to communicate
among people actively developing the current system. Such “comprehen-
sive” documentation may contribute to the next project/release, but the
immediate goal is to deliver the current requirements as quickly and in-
expensively as a high level of quality and reliability allows.

WORKING SOFTWARE

25

Many years ago, I was at a conference and Barry Boehm spoke about the
documentation “memorial libraries” he had seen in many companies,
filled with shelf upon shelf of binders where the only people who ever
looked at it were auditors when they needed to verify what happened
when they weren’t there to see it for themselves.

If you are going to generate any volume of documentation, you must ac-
cept the total cost of ownership (TCO) make the investment to keep that
documentation current. As a developer, I often found that I could not
trust documentation because it did not match the code. I spent a week
sometimes trying to debug a problem or add functionality believing in
text documentation, both outside and within the code.

I once worked where, instead of updating the original design document
to match the new work, people created addenda documents which only
addressed the changes being made. After a few years, if you wanted to
use/rely upon the documentation, you ended up having to read 6–8 doc-
uments: the original and various addenda. Eventually, people just didn’t
bother which also led to not bothering to document at all after a while.
The old development-centric view used to be that you needed to read the
code to know what the system did. That was the only reliable “documen-
tation.”

The Agile approach does not mean to reject all documentation, of course,
just to apply some simple ideas so the documentation has “sustainable”
value. By “sustainable,” I mean that the documentation is considered so
valuable for developing high quality, valuable software, that people will-
ingly create it and keep it updated. Agile development prefers executable
work products (e.g., tests) to static ones (e.g., traditional text documents).
Indeed, a strong automated test suite is, in effect, a set of executable re-
quirements.

Going from user stories to working (i.e. tested) software using strong
programming practices and meaningful naming conventions will mean
you need less of the traditional documentation. There is risk when code
is written and not easily and quickly verified to be correct. The interval
between writing code and verifying code is that risk. In traditional devel-
opment, that time can be weeks, even months. The goal is to shorten that
time as much as possible. (More will be said about approaches to quality
and testing in future chapters.)

I once worked as a coach for a project with three teams (growing to five
over the 10 months of the project). At the outset, the teams could get one

UNDERSTANDING AGILE VALUES & PRINCIPLES

26

build every four weeks (their iteration length). Such builds were done by a
separate group, in a separate state, supporting all the company’s projects.
You can imagine what that meant to team productivity if they were to
try to honor completed working software as their goal each iteration. It
took several months for the management of that project to get the teams
to a build a week, then a build each day, then, not too long after that, two
builds a day: one ready each morning for teams on the East Coast and
one done at the end of their day for the offshore members of the teams
to work on. The ability (and confidence) of the teams to be more produc-
tive substantially increased at each one of these junctures. Their velocities
went up 10%-15% each time just based on this.

The key thing to remember is that communication, not documentation,
should be the goal. Since one size does not fit all needs, each release/proj-
ect should evaluate what needs to be communicated, to whom, and what
the best way to do that will be. Accepting “the way it’s always been done”
is likely not going to help you deliver working software frequently that
meets customer needs. It may, in fact, impede it.

PART 5
Customer Collaboration

UNDERSTANDING AGILE VALUES & PRINCIPLES

28

As mentioned in Chapter 2, this value can be looked upon as just a form
of individuals interacting. But I think it is a different situation than how
people in the development organization interact and what the content of
that interaction would be. Collaboration with customers is focused on
the “what” side of the work rather than the “how.” That is, it focuses on
what the customer wants as functionality and what they will need to see
as evidence of the functionality being satisfactory to them.

Now, customers may get into the “how” quite often as they attempt to
define the “what”. Indeed, with traditional requirements documents, get-
ting into details of both “what” and “how” is typical. Customers new to an
agile approach could be expected to combine the two. They may consider
keeping them separated as restricting their ability to define their require-
ments. The agile approach recommends not diving deeply into “how” too
soon for a few reasons:

• It may mean spending a lot of time on something that ends up not
actually getting developed because the customer changes what they
want later in development.

• Even if it will get developed, people will know more about what is
needed closer to the time they must make that decision. (The agile
approach recommends waiting until “the last responsible moment”
before a commitment is made so you know as much as possible when
you must make that decision.)

• When the time to implement the functionality occurs, you may find
you have unnecessarily constrained your decision making. (One can
cram 10 pounds of potatoes into a five-pound bag by mashing them
early on, for example, but you can’t expect to get french fries later.)

All of these are also good reasons for not getting overly detailed about the
“what” too soon.

It’s important that the customer sees the value in frequent, open com-
munication about what they want and what development can show to be
working as a way to reduce risk and increase satisfaction with the results.

When I have seen organizations forced to work with customers (internal
or external) who will not accept this, there has been noticeable stress on
both sides. More than once, I have heard the business side of an organi-
zation say they don’t have time for frequent meetings and that they just
“need it all done by the deadline” so don’t want to take time for prioriti-
zation. It doesn’t always work, but my basic discussion with them goes
somewhat like this:

CUSTOMER COLLABORATION

29

“Do you always get everything you want by the project deadlines?”

They look at me as if I am a bit dumb and say, “Almost never.”

“But you do always get the most important things by the deadline, right?”

Now a look as if I am truly dumb, “No. Frequently I don’t.”

“So that’s why we ask for prioritization and frequent feedback, so that if
there are problems getting it all done by the deadline, you will get all the
highest-valued functionality possible and it will be just the way you want
it.”

Sometimes the lightbulb goes off.

Contract negotiation
It’s unfortunate but a lot of contracts seem to be written not to describe
how the vendor and customer will work together for success but to define
the penalties for when one or the other fails to meet their responsibilities.
This doesn’t seem like a way to establish a particularly collaborative rela-
tionship between people. Contracts also typically seem to be based on the
belief that everything needs to be defined up front. A more incremental
approach to defining how the work will be done and how people will
work together, collaboratively, to produce the most satisfactory result
should be a critical part of any contract.

From the agile perspective, the customer and development organization
should explore expectations for customer participation in:

• the iterative process of requirements (e.g., user story) definition and
refinement,

• prompt response to questions during the release/project to clarify
functionality expectations,

• defining acceptance criteria (conditions of satisfaction) for each re-
quirement,

• each iteration’s review of the functionality developed during that it-
eration,

• offering feedback to confirm their acceptance of what the team has
done or their desire for any changes,

UNDERSTANDING AGILE VALUES & PRINCIPLES

30

• ongoing elaboration of functionality as the team moves from highest
to lowest priority in requirements, and

• prioritizing requirements from highest to lowest value so the devel-
opment team always works on the highest-valued remaining func-
tionality.

If customers are not prepared to do these things or enough of them
(which depends on the project), then perhaps a more “protective” contract
is smart.

There are a variety of places to look for opinions about structuring ag-
ile contracts. Just type “agile development contracts” into your favorite
browser. A few possibilities are:

• https://en.wikipedia.org/wiki/Agile_contracts (which speaks mostly
of “agile fixed-price” contracts),

• https://www.mountaingoatsoftware.com/articles/writing-con-
tracts-for-agile-development (which takes a user story and conditions
of satisfaction approach to documenting contractual expectations),

• https://www.scaledagileframework.com/agile-contracts/ (addresses
this framework’s managed-investment contract), and

• http://www.agilecontracts.org/ (a 44-page extract from the book
Practices for Scaling Lean & Agile Development by Craig Larman and
Bas Vodde on contracts in an agile setting).

https://en.wikipedia.org/wiki/Agile_contracts
https://www.mountaingoatsoftware.com/articles/writing-contracts-for-agile-development
https://www.mountaingoatsoftware.com/articles/writing-contracts-for-agile-development
https://www.scaledagileframework.com/agile-contracts/
http://www.agilecontracts.org/

PART 6
Responding to Change

UNDERSTANDING AGILE VALUES & PRINCIPLES

32

Maybe nothing represents the traditional dictionary definitions of “ag-
ile” more than this value. A typical definition reads “able to move quickly
and easily” with synonyms being “nimble, lithe, supple, limber, acrobatic,
fleet-footed, light-footed, light on one’s feet, alert, sharp, acute, shrewd,
astute, perceptive, quick-witted”. All of these imply an ability to change
with minimal effort, but there is something else implied.

Here are some thoughts from an article entitled “Mountaineering Train-
ing | Body Awareness: Balance & Agility” which seem appropriate. (Also,
the first article I remember reading about the agile approach was by Jim
Highsmith comparing software development to climbing.)

Body awareness is the combination of balance and agility that allows you to
move comfortably and confidently through difficult and challenging terrain.

Balance in mountaineering allows you to climb through challenging condi-
tions…while keeping your equilibrium and avoiding using excess energy or con-
centration to stay centered. Simply put, it’s being comfortable on your feet even
when you’re traveling through uncomfortable terrain.

Agility is being able to move quickly and easily — to be nimble and reactive…to
react to the unexpected….

...Both balance and agility are motor skills and can be improved over time.

So, it’s not just moving quickly, but maintaining stability during that
movement. Responding to change in a meaningful, responsible manner
is not only about change but about directing that change toward greater
stability in the results. From a software perspective, it means change that
produces a more satisfactory, useful delivery to the customer than before.
It involves applying many faculties and skills, including alertness and per-
ception to decipher the implications of the change, in deciding to change
and basing that on the best information available when such a decision is
to be made. It is not a license to be ad hoc or to do something when “You
should know better.” (More on this in Chapter 15 on the ninth principle.)

From an implementation perspective, it means constructing a process for
working that allows change to occur with reduced risk and cost. An iter-
ative, incremental approach has long been accepted as the best way to do
this. In June 2003, Victor Basili and Craig Larman published “Iterative
and Incremental Development: A Brief History” in IEEE Computer, in
which they pointed out that this had been accepted 13 years before the
waterfall model that Winston Royce defined in his 1970 paper. Basili and
Larman have a lot to say about the waterfall model, including how Royce’s

https://www.rmiguides.com/blog/2013/07/23/mountaineering_training_body_awareness_balance_agility
https://www.rmiguides.com/blog/2013/07/23/mountaineering_training_body_awareness_balance_agility
http://www.adaptivesd.com/articles/ascents.html
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf

RESPONDING TO CHANGE

33

son states that Royce felt a waterfall approach “would not work for all
but the most straightforward projects” and how the rest of Royce’s paper
addressed “iterative practices”.

Following a plan
There is plenty of agile-related literature about the difficulties and po-
tential wastefulness of long-term, detailed planning when working in a
complex situation where change is inevitable and the ability to predict the
exact outcome desired is limited.

Consider the typical project plan-creation approach of handing out a de-
tailed requirements document and asking people to estimate, in hours,
every task needed to produce the result described. This process of task-
ing and estimation takes many hours of effort itself. Eventually, all that
data is sent to a project manager who feeds it into a project-management
tool of some sort and, at some point, a project plan exists. That plan says,
for example, “Seven months from now on Wednesday at 3 o’clock, here’s
what will happen.” Who believes that? Who can be sure the person who
provided the data to produce that result will really do the task that day?
Everyone knows things will change and the project manager spends con-
siderable time each week of the project adjusting that plan.

This all assumes everyone understands what is being described and that
the plan describes what the customer wants. But is it even fair to require
(or assume) that people, especially the customer, can conceive of every-
thing and how it must work before anything has been designed or shown
to work? Then, as well as presuming this foreknowledge, can we also
expect that once the considerable effort of doing all this definition and
planning is completed (which by some estimates can consume up to 50%
of the project schedule) nothing major should be expected to change or,
more critically, be learned?

From sources in the history of military planning we have statements at-
tributed to people like von Moltke: “No plan survives contact with the en-
emy.” (He really said, “No operation extends with any certainty beyond the
first encounter with the main body of the enemy.” The terse version seems
a bit easier to grasp at a glance, though.) We also have Eisenhower saying,
“In preparing for battle, I have always found that plans are useless….” The
ellipses, though, represents the remainder of Eisenhower’s quote, which

UNDERSTANDING AGILE VALUES & PRINCIPLES

34

is “but planning is indispensable” — which brings us to the agile approach
to planning which, like development itself, is early, frequent, and iterative.

It is the act of planning with the whole team involved that matters, not the
specific plan at any given time. Planning causes us to communicate, to col-
laborate, to build confidence and trust in how we will work to move in the
currently understood direction. Every day, an agile team has the chance
to see where everyone is and determine if where they are and where they
are headed needs to be adjusted in any way based on new information.

Agile teams contribute to forming a release plan based on the known
functionality desired, how much of that the team believes it can deliv-
er each iteration, and how many iterations, therefore, it would take to
deliver all the known functionality. But things will change: teams may
get better at delivery; the customer may change what they want, having
seen some of the early working software; perhaps the business feels it
can release a valuable increment of software earlier than planned. And,
of course, it may be that not everything originally desired can get done
within the budget and schedule. But, using an agile approach, at least what
does get done should be the highest-value functionality. (Refer to Chapter
5 for an example of an actual discussion with a product manager on this
topic.)

PART 7
Satisfy the Customer

UNDERSTANDING AGILE VALUES & PRINCIPLES

36

“Our highest priority is to satisfy the customer through early and contin-
uous delivery of valuable software.”

This chapter begins 12 chapters, each addressing one of the Principles in
order as found at http://agilemanifesto.org/principles.html.

Our highest priority
Being agile means being dedicated, first and foremost, to satisfying the
customer. This does not have to mean that “the customer is always right,”
but it does mean that the customer always deserves to be taken seriously.
It also means that trying to satisfy the customer means both customer and
development team understand what that means and what both can do
to achieve that satisfaction. This brings us back to communication, col-
laboration, commitment, continuous improvement, trust, and excellence.
Achieving this highest priority won’t happen satisfactorily for everyone
without pursuing these fundamental considerations.

I suppose everyone’s heard the phrase (or something like it): “It’s hard to
remember you’re supposed to be draining the swamp when you’re con-
stantly fighting the alligators.” There are lots of things that can distract
from remembering that your main goal is to satisfy the customer. There
are other company priorities. There are organizational silo bureaucracies.
There are dependencies between teams. There are technology challenges.
There are the requirements themselves, which, in too much detail, can
actually obscure what’s truly needed.

Remember that lean ideas are some of the roots of the agile approach. A
key lean idea is the elimination of waste, i.e., the elimination of anything
that does not directly contribute to the creation and delivery of customer
value. Doing a Value-stream mapping of your process can bring visibility
to where waste resides as well as assign quantitative impact them. This
is usually computed as time spent on each step of the process plus time
spent (waiting) between steps.

You may believe that areas of waste are obvious, but perhaps not to every-
one. A lot of the waste in an organization would not appear on a formal
process diagram. Honesty in communication is critical for this. You must
be able to show what is really happening, not what everybody thinks is
happening. This will probably mean you have to talk about the “elephant

http://agilemanifesto.org/principles.html
https://en.wikipedia.org/wiki/Value_stream_mapping
https://en.wikipedia.org/wiki/Value_stream_mapping
https://en.wikipedia.org/wiki/Value_stream_mapping
https://en.wikipedia.org/wiki/Value_stream_mapping
https://en.wikipedia.org/wiki/Value_stream_mapping
https://en.wikipedia.org/wiki/Elephant_in_the_room

SATISFY THE CUSTOMER

37

in the living room” and the “dead fish under the table”: those things every-
body ignores as they get their work done despite the “smell.”

Early and continuous
Get working software into the customer’s hands right away. Keep doing
that every iteration and work collaboratively with the customer to get
feedback that lets you know they are satisfied with what they see and/or
any changes they’d like made.

You want to start early so the customer is immediately engaged with you.
There’s no going away for weeks or months while you do “infrastructure”
work and cannot show any actual customer functionality. You’ll lose the
customer’s commitment to be a part of the process and give you feedback.
An agile iteration is expected to deliver customer-recognized value. Don’t
consider things agile iterations if they do not.

You want to do this continuously to maintain customer engagement and
ensure no deviation from what the customer wants, even if they want
changes (in fact, especially if they want changes). Doing this requires
communication, collaboration, and continuous improvement while rein-
forcing commitment, trust, and excellence.

In this regard, active customer participation in iteration reviews/demos
is crucial. (In a future chapter, I’ll say more about this review/demo in
some detail.)

Valuable software
Who doesn’t want the software to be valuable? But there are a lot of fac-
tors that can go into what makes it valuable and what makes some fea-
tures more valuable than others. Ultimately, value is in the eye of the be-
holder: the customer. This is what makes collaboration with the customer
so important in achieving satisfaction. What makes a piece of function-
ality valuable to them? What will they expect to achieve by having such
functionality? How will things work better for them with it than without
it? Understanding their value proposition for a piece of functionality can

https://en.wikipedia.org/wiki/Elephant_in_the_room
https://www.selfleadership.com/communication-tip-put-the-fish-on-the-table/

UNDERSTANDING AGILE VALUES & PRINCIPLES

38

convey their sense of urgency/priority as well as better inform the devel-
opment team how best to implement that functionality.

Despite this, sometimes other factors may affect priority more than pure
customer value. For example, I once worked with a team whose products
were used in nuclear power plants (among other places). They had to meet
Nuclear Regulatory Commission requirements, which asked for substan-
tially more documentation than other teams in the same company. That
documentation also had to be created and approved before work was sup-
posed to start on the functionality it described. Though the functionality
was of the highest value to the customer, there was a priority for that
team to create and approve the documentation ahead of the functionality.
Sometimes, the priority of various forms of compliance regulations may
override other, more directly functional value.

Even though you don’t want to delay working on things of value to the
customer, technology and infrastructure constraints may require that
some things must exist before one can show fully working software that
satisfies the customer. For example, if you need to make database changes
to support customer functionality, you could, while such internal work
is going on, develop the customer-visible functionality and get feedback
sooner than later. You would simulate the database and show the custom-
er what does work.

A team I worked with had to do just that. A customer requirement spec-
ified entering some (new form of) data and having the database respond
with some corresponding data that would be displayed. The database
work had to be done by a group outside the team and they weren’t going
to get to it for a few months. But the customer priority was to see the
functionality as the next highest-priority item. The team decided to break
that functionality into three separate stories: one to get the data from the
customer and send it to the database, another to get the data back from
the database and display it as the customer wished, and the third to inte-
grate the other two parts when the database group got around to making
the needed updates.

Now, the team could have pushed the whole thing out, but they felt that
would have been forcing the customer to deal too much with their orga-
nizational issues. So, they completed the first two stories, simulated the
database back end, and showed this to the customer at the next iteration
review, making sure the customer understood it would be two or three
months before the back-end work could occur. But the customer got to
see what they needed and had some suggestions for small changes which

SATISFY THE CUSTOMER

39

the team made the next iteration. Two iterations later, the database work
was done and the “integration story” was accomplished successfully. The
fully live functionality was then demonstrated.

It was not the purest way to work, but it upheld customer priority for
what they wanted to see while not misleading the customer about what
was and was not working. They, and the customer, felt this was the most
valuable approach possible.

PART 8
Welcome Change

UNDERSTANDING AGILE VALUES & PRINCIPLES

42

“Welcome changing requirements, even late in development. Agile pro-
cesses harness change for the customer’s competitive advantage.”

Customer’s competitive advantage
It’s appropriate that this is the second principle listed. Part of satisfying
customers involves doing things that offer some advantage to their busi-
ness. Building the right system (i.e., what the requirements state) is the
basic way to accomplish this, but what’s “right” at any moment can change
and that often means having to change the system in some fashion. It’s
important to remember how changing a system (including implementing
the stated requirements) provides value to the customer. Taking requests
for change seriously and not thwarting achieving better customer advan-
tage is the point of this principle.

Welcome changing requirements
Probably no developer exactly welcomes requirements that change on
them. Some discussion with a couple of the people who helped draft the
Manifesto suggested that the spirit of this principle meant that the devel-
opment team should not create unnecessary barriers to change by simply
resisting such requests. Yes, they just spent a lot of time and budget to try
to make the system as correct as possible based on prior customer feed-
back, but the customer wants a change. If the customer understands and
accepts the consequences of such a change, the development team should
work to make that change possible.

Of course, the consequences could be that such a change will:

• extend the planned deadline (if the customer still wants everything
else they already expected to get within the original deadline),

• increase the budget (also if they still want everything else),
• push some previously expected functionality out beyond the current

deadline and/or budget (to stay within the deadline and budget), and
• affect architecture/design so that it limits future options (which is

less easily explained because of the more technical consequence it
represents).

WELCOME CHANGE

43

However, if the customer does understand and accepts such impact(s), the
development team should make the requested changes. (It has been men-
tioned to me that this is no different than normal projects and the impact
of changes. This is true, except that one option is not supported by an ag-
ile approach as reasonable and that is to accept all changes without impact
to the cost, schedule, or other already defined scope.)

Ability to welcome change, however, can depend a great deal on the excel-
lence in design of the existing system. If people cannot be confident about
system changes because the code is not well-designed and the tests for the
existing system are inadequate or expensive (and slow) to run, developers
may be resistant to (or at least move more slowly in) making changes. If
you don’t feel you can go into the system, understand what it now does,
and make changes without fear of causing new or uncovering existing
defects that cannot easily be found, you will be more concerned about
making changes. At the very least, you may move far more slowly because
of that concern.

Change, of course, is easier when the system is easier to change. A tautol-
ogy, to be sure, but good technical practices will make changes easier. A
couple quick examples of short development episodes and robust testing
might be helpful at this point, though.

One company I coached at was able to build and test their 40-million-line
system every night because they had invested significantly in automat-
ed testing. (Indeed, I have not seen any large development effort get the
productivity gains they hope to see from agile development without ro-
bust automated testing.) One team at the core of the system’s function had
20,000+ tests they ran nightly so they could be confident every morning
that their work should not impede other parts of the system.

Another company had a smaller, but no less technically complex, system
of 1.5 million lines. They built and tested every two hours. If a developer
checked in any code and associated tests (which they had to include) with-
in any two-hour period, at every two-hour mark, the system automati-
cally built and ran all tests, prior and new. If that automated run did not
happen for four hours, management would come around and ask why.
They expected small increments of new functionality to be put into the
system that frequently and proven to leave a stable system state. If it did
not, pulling out the troublesome code was easy for them. (I am reminded
of the character in the movie Kelly’s Heroes, who, describing how fast his
tanks can go in reverse, says “We want to know we can get out of trouble
even faster than we got into it.”)

UNDERSTANDING AGILE VALUES & PRINCIPLES

44

Both organizations, each morning or two-hour cycle, knew the stability
of the system. You can make changes far more confidently if that sort
of visibility is possible. The longer the time between code creation and
testing, the larger the risk and the more slowly development may occur.

Late in development
If developers don’t like change, they certainly won’t like it late in a re-
lease/project. A well-designed, easily tested system will mean that even
late changes (assuming understanding and acceptance of consequences)
should not cause great concern. The iterative nature of agile development
allows for considerable opportunity to review the state of the system and
make changes earlier rather than later through the opportunity to see and
provide feedback on working software at the end of every iteration. This
is typically not the case in a more “phased sequential” (a nice term for
“waterfall”) approach where the true state and adequacy of the system is
not seen until late in development.

The dislike for change, and especially late change, derives from this tradi-
tional way development and change happens. Much time and budget has
been spent creating and implementing the rather detailed requirements.
Many design assumptions have been based on the initial understanding
of those requirements. Late changes usually mean much time and budget
will be spent going back and updating and correcting intermediary deliv-
erables, not just the code itself. While this is happening, technical work
may come to a halt, at least in parts of the system, and people will need to
shift to other work to keep busy. Then they will be asked to shift back to
where they were and make the changes. Multitasking and interruption in
flow leads to loss of productivity in pure terms because of time wasted,
but it also impacts people’s sense of accomplishment and satisfaction in
work.

Of course, under pressure to make changes fast, people may get the work
done by skipping certain quality practices (e.g., code reviews and unit
testing), working (a lot of) overtime, and skipping updating the documen-
tation. Naturally, all these can be bad ideas. I’ve mentioned the latter al-
ready in Chapter 4 of this series. I’ll get to the other two in later chapters.

http://lpd2.com/wp-content/uploads/2013/06/ReinertsenFLOWChap1.pdf

PART 9
Deliver Frequently

UNDERSTANDING AGILE VALUES & PRINCIPLES

46

“Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale.”

Deliver working software
frequently
Chapter 7 discussed “early and continuous delivery” and Chapter 4 dis-
cussed working software. The “frequently” part was implied in contin-
uous delivery when I said “Get working software into the customer’s
hands right away. Keep doing that every iteration….” What I didn’t say
was how long an iteration would be. I don’t know too many agile coach-
es and trainers who aren’t encouraging clients to consider no more than
two-week iterations. That was not the case when the Agile Manifesto was
written.

From a couple of weeks
to a couple of months
When the Agile Manifesto was written, the various “lite” approaches had
cycles from one week to three months. The phrase you see here was, it
seems to me, a compromise among all the people involved. With people
from XP, Scrum, and like-minded approaches being about half the attend-
ees, I can believe a phrase such as “from one to four weeks” could have
made them happy. That would not have worked for everyone, though.

With a preference to the
shorter timescale
This phrase, closing out the principle, represents those supporters of a
shorter timeframe and perhaps the recognition by the others that this
seemed to be the direction things would head in. These days, there is
not a lot written or heard about the approaches with longer cycles. Fea-
ture-driven design seems to have had the last book written about it in 2002

DELIVER FREQUENTLY

47

though the Wikipedia article seems to have had numerous updates over
the years. The dynamic systems development method (DSDM) remains
an active community that recommends the shorter timescales, though
it has rather voluminous online documentation in two sets: DSDM and
Atern. (The latter is described as “a framework based on best practice and
lessons learnt by DSDM Consortium members” and is the current form
of the DSDM approach. Commercial books date back to 2002.)

Why the short iterations?
For some, the idea of putting out, at least for customer review, working
software every few weeks (let alone every week like XP teams do) seems
inconceivable. And that does mean what I think it means: “not capable of
being imagined or grasped mentally; unbelievable.” I would recommend
that most agile teams start with two-week iterations. I believe it takes
three to four iterations before teams begin to understand what it means
to work together in an agile fashion. A team may as well get those over
within a couple months rather than up to four months. You can always go
to three or four weeks later if that seems necessary.

Mike Cohn, one of my CSM trainers along with Ken Schwaber, has said
that when Scrum teams have come to him asking to extend their Sprints
from four weeks to, say, six weeks, he says, “Let’s try two-week sprints
instead.” They feel they cannot get things done in four weeks and want
more time. Cohn says, in effect, let’s figure out how much you can really
get done in a couple of weeks. The idea is that if you can’t reasonably pre-
dict what can get done in four weeks, what are the odds you can predict
getting potentially more done in six weeks?

I worked with a team once that, because of the company policy, was ex-
pected to work in four-week sprints (because that’s what was in the origi-
nal Scrum book and what trainers were saying a decade ago). They want-
ed to set a shorter target for getting things done for themselves. While
working in four-week sprints as far as everyone else was concerned, they
established a planning approach that targeted weekly goals for having
working software.

Also as I mentioned in Chapter 4, there was a team that worked to get
functionality broken into pieces they could complete every two to three
days. Neither of those teams ever failed to deliver on their sprint goals and

https://en.wikipedia.org/wiki/Feature-driven_development
https://www.agilebusiness.org/resources/dsdm-handbooks
https://medium.com/@scott.duncan/understanding-the-agile-values-and-principles-series-part-4-working-software-bd22a1c96427

UNDERSTANDING AGILE VALUES & PRINCIPLES

48

they were not sliding through on easy effort commitments. Indeed, they
seemed to find it easier to get more done by defining smaller amounts of
work.

Another advantage, but also a challenge, of shorter iterations is the op-
portunity for more frequent feedback from customers about what the
team has done in the past few weeks. The problem is that customers (and
internal stakeholders) are likely not used to such frequent demands on
their time to interact with the team. I’ll have more to say about this in the
next chapter.

PART 10
Working Together

UNDERSTANDING AGILE VALUES & PRINCIPLES

50

“Business people and developers must work together daily throughout
the project.”

Business people and developers
The term “business people” can include people with job titles such as cus-
tomer, end user, product owner, project manager, product manager, exec-
utive, business analyst, or subject-matter expert. Sometimes this is gener-
ically referred to as “the customer.” It’s anyone who wants some amount
of functionality created and would communicate their ideas for that to
those who will create that functionality. They own the project’s vision
and roadmap, create/gather requirements, help manage the requirement
backlog, provide acceptance criteria, elaborate on requirement details,
and provide feedback on work done by the development team.

All the very earliest agile teams consisted primarily (if not completely) of
software developers who did design, wrote code, tested, and documented
results. Therefore, the term “developer” has come to represent anyone on
a team who contributes actual effort to some aspect of the deliverable
functionality. The Scrum Guide used to say that the only title on a de-
velopment team was “developer” to emphasize avoiding siloed behavior
on the team. The latest version now says, “Scrum recognizes no titles for
Development Team members, regardless of the work being performed by
the person.” One would expect people on the team to have (had) titles
such as developer, business analyst, quality analyst or tester, tech writer
or documentation specialist, user-experience designer, or database ana-
lyst. These people have the responsibility to estimate user stories, assist in
story refinement (what some call “backlog pruning”), participate in itera-
tion planning, commit to and deliver on the iteration goal(s), review and
demonstrate each iteration’s accomplishments with the customer, and
perform continuous improvement.

Work together daily
If an agile effort is to focus on “working software over comprehensive
documentation”, the expectation is that a lot of what is represented in
traditional requirements documentation will be communicated verbally
and acted upon very soon after that. If a team is working in iterations of

WORKING TOGETHER

51

one to four weeks, there isn’t much time to wait for answers to questions.
Hopefully, answers to questions can come in, say, no more than 24 hours.
Any greater delay may mean functionality does not get done during the
iteration or, worse, teams will guess what might be intended/needed and
spend time developing the wrong thing.

Customers may not have experienced, anticipated, or prepared for this
level of commitment to working with teams. In this case, some intermedi-
ary may need to exist (e.g., the product-owner role in Scrum). That person
must know enough about what is wanted to provide/get answers rapidly
based on their understanding of the desired functionality (as expressed in
stories).

Sometimes this role is filled by more than one person due to the work
required, but a team should only have to listen to one “voice.” It will be an
impediment to team effectiveness if they have to sort out the opinions of
many people to figure out what is wanted. The job of the intermediary is
to provide that voice.

Proactive teams and product owners include plans for regular communi-
cation during iterations if ad hoc daily communication is an issue. I have
seen teams and their product owners meet weekly to go over future (and
current) work to prevent too much time elapsing between actual commu-
nication. The need for ad hoc communication is certainly going to occur,
but if the product owner is separated by substantive time and distance
from the team, more formally planned communication is necessary. The
goal, however, is to avoid simply falling back on sending text-based com-
munication for everything because actual talking is too hard.

Throughout the project
Though tightly coupled to daily communication, having customers en-
gaged throughout the entire development time is a further challenge for
many organizations. The following diagram suggests what a client/proj-
ect manager may expect their attention commitment to be in multiple,
overlapping waterfall projects. They spend considerable time up front
during requirements definition and clarification, then expect to go away
during implementation, and finally return at the end of the project to re-
view results.

UNDERSTANDING AGILE VALUES & PRINCIPLES

52

Attention expectation by customers, based on waterfall experience.

People probably recognize the danger inherent in such long periods with
little or no communication. However, the traditional waterfall approach
presumes behavior like this, trusting in the adequacy of fully defined doc-
umentation to serve as the major communication approach.

PART 11
Motivated Individuals

UNDERSTANDING AGILE VALUES & PRINCIPLES

54

“Build projects around motivated individuals. Give them the environ-
ment and support they need, and trust them to get the job done.”

Before I even get into the elements of this principle, I should say how I
have heard people react to it. I have spoken about and trained people on
the values and principles many times. When I get to this one, I have heard,
more than a few times, a comment like “Well sure, if we could do all that,
things would be great.” I ask them why from an agile perspective don’t/
can’t they do that then. Making these things true is an important contin-
uous-improvement goal, especially for management.

Motivated individuals
I’m not going to talk about how to motivate people. You’ve probably
heard talks like that. I’ve given talks like that. When I was asked to do
such a talk at one company, I heard the best comment on doing such talks.
I used to sit right by a VP in software development who said to me the
day after I got the request to do such a talk, “Scott, we don’t need talks on
motivating people. We need to figure out how to stop demotivating them.
People don’t come to work here demotivated. What do we do to them
after they get here that people seem to feel we need to figure out how to
motivate them?” He was right. I still did the talk but it became a workshop
on avoiding demotivational behavior.

W. Edwards Deming, in his book Out of the Crisis (1986), said, as part of
one of his 14 Points of Total Quality Management, “Remove barriers that
rob people of pride of workmanship….” If you are not familiar with Dem-
ing’s work, you should look at it and understand his impact on quality and
productivity. The Japanese did, and so respected what he taught them that
in 1951, Japan named their national quality award after him: the Deming
prize.

Environment and support
If teams are going to be asked to deliver high-quality results to customers,
then they should be given all they need and every opportunity to do that.
It’s as simple as that. “But you don’t understand the reality here,” I have
heard people say. Becoming agile is about changing that reality, not just

http://asq.org/learn-about-quality/total-quality-management/overview/deming-points.html
https://en.wikipedia.org/wiki/W._Edwards_Deming

MOTIVATED INDIVIDUALS

55

trying to push a bunch of new practices (the square peg) into the existing
organizational approach (the round hole). This is the reason I think an
appreciation for what the agile values and principles have to say is so im-
portant for an organization contemplating the transformation to an agile
way of being (and doing). Part of that appreciation is that it is a transfor-
mation, not just a transition. It’s a change to the environment and system
within which people work, not just sliding in new titles and ceremonies.

Sometimes, when people think of “environment”, they think of the physi-
cal structure and the move to open workspaces with no permanent walls
and totally moveable furniture. There has been plenty of criticism of such
structures. I’ve seen it work (in various forms) both wonderfully and not
so wonderfully. But I’ve seen that with more typical office and cube struc-
tures as well. The idea of the open space was to cut down barriers to the
frequent interaction and communication assumed in agile teams. Not ev-
eryone is comfortable working that way, and I have certainly seen teams
that worked well without this. If the motivation to communicate, collab-
orate, improve, trust, and pursue excellence is there, people can work in a
variety of physical spaces.

Trust them
Maybe this is the hardest thing in the principle to achieve. Much orga-
nizational structure and process, as I noted in Chapter 2, seems to exist
because trust isn’t present. I’ve certainly seen examples of this.

Before I became involved in agile methods, I worked at a place where the
company president’s view of quality was that, “Some people just don’t do
their work right. If we could find them and get rid of them, we’d be fine.”
His view was that poor quality was about individual moral failure to per-
form properly. He had turned what Deming decades before had treated as
an objective, engineering system matter into a moral, subjective, personal
one.

Many years before that, I gave a lecture on quality and process at a local
university’s MS in software engineering program. I was asked how cheap-
ly one could expect to hire people if the process was rigorous enough.
That is, if we don’t want to trust/expect much competence from people,
how inexperienced (and cheap) a staff could a process let us get away with?

UNDERSTANDING AGILE VALUES & PRINCIPLES

56

The way many organizational processes grow over the years is often due
to similar thinking. When something goes wrong in a project, it’s often
decided to prevent that from happening again by instituting some more
rigorous rules/oversight procedures. Over time, the process bureaucracy
grows and grows bit by bit until more time is spent adhering to process
regulations then developing the product.

Kent Beck has said (and I’m paraphrasing a bit) that software development
is like “driving a car, not aiming a bullet.” Rules of the road and various
traffic indicators exist as a framework within which we hope most people
can safely drive. We expect people to take a constant inspect-and-adapt
approach as things may unexpectedly happen and demand a more im-
promptu response than planned. On the other hand, once you fire a bul-
let, you’ve lost control over it, so a lot of up-front planning is needed.

Now, we could try to restrict people’s driving mistakes by building all cars
and roads like the old speedway ride in Disney parks where you cannot go
very fast, there are thick bumpers all around the car, and barriers channel
the path you can follow. Some organizational process seems a lot like that.
I believe methods should be designed for people who know how to drive
rather than those who do not. Deming said that, in most cases, it was the
system people had to work under that needed to be reformed rather than
the people. Of course, some people need to change how they work and
Deming did address training people who need to perform better.

A great deal could be said about trust. But look at your existing process-
es (do a value-stream map as mentioned in Chapter 7) and ask what the
impact would be if teams were allowed to manage each one themselves
or between one another. Maybe it’s a trust issue if you find this incon-
ceivable.

PART 12
Face-to-Face Conversation

UNDERSTANDING AGILE VALUES & PRINCIPLES

58

“The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.”

This chapter, addressing communications modes, will comment upon
distributed team issues, daily meetings and iteration reviews as examples
of “conversations” that occur.

Modes of communication
In Chapter 3, I showed this diagram and promised to get back to it.
Alistair Cockburn had studied teams and came up with this spectrum of
communication modes and what he saw as their comparative effective-
ness. (Other versions of this diagram that I have seen label the two lines
as “non-interactive” and “interactive”.) Clearly, the “question and answer”
modes are shown as having higher effectiveness and richness.

Paper
Audiotape

Videotape

2 people
on email

2 people
on phone

2 people
at whiteboard

CO
M

M
UN

IC
AT

IO
N

EF
FE

CT
IV

EN
ES

S

RICHNESS (”TEMPERATURE”) OF COMMUNICATION CHANNEL(cold) (hot)

NO QUESTION - ANSWER

QUESTION AND ANSWER

Comparative effectiveness of communication modes.

Perhaps most people can agree with the intent of this diagram, but some
will point out, “Sure, but we have distributed teams.” I’ll get to that, though
it is interesting that the VersionOne survey, run over many years, indicat-
ed in their 12th annual survey that about 40% of the respondents felt that
adopting an agile approach improved their distributed-team experience
rather than aggravated it; only 17% of those same people initially felt that
pursuing agile would help in this regard.

https://explore.versionone.com/state-of-agile/versionone-12th-annual-state-of-agile-report

FACE-TO-FACE CONVERSATION

59

For now, let’s just look at some of the modes and what they represent. It
is interesting that paper (text forms of documents) ranks the very lowest
on this scale yet is traditionally the most commonly (even highly) regard-
ed approach to (archival) communication. Projects spend a great deal of
time and money generating requirements specifications, architectural
designs, and lower-level detailed designs before they get to implement-
ing anything. Each of these usually involves many people in collecting
the information then reviewing and approving it, believing this due dili-
gence is the necessary and responsible way to plan and execute a project.
Of course, a major assumption is that people can think of everything up
front and not change their minds much later. This is the classic waterfall
or phased-sequential philosophy enshrined in traditional project man-
agement. The agile approach believes that this is not true and that it is
unreasonable to expect people to be able to do this. It is not some form of
moral/professional failure when they cannot.

One lifecycle model illustrating this approach and matching it to the ver-
ification/validation expected at each phase is the V-model as found in a
StackExchange discussion. Each phase of system specification is matched
with a testing approach that indicates the focus of the testing taken to
complete the system at that level.

At the other end of the diagram is “2 people at whiteboard,” represent-
ing the face-to-face, real-time interaction highly prized in being agile.
People can see one another, which dramatically increases richness since
more information is often conveyed by what we see than what we hear
(including being able to draw on that whiteboard and rapidly make ed-
its). When you are right there with other people, you can see quizzical
looks or when it seems someone might need to say something. You can
also avoid most clashes in trying to speak, which most people would like-

https://softwareengineering.stackexchange.com/questions/228282/can-someone-explain-the-v-model-process-why-is-it-different-than-the-waterfall
https://softwareengineering.stackexchange.com/questions/228282/can-someone-explain-the-v-model-process-why-is-it-different-than-the-waterfall
http://www.nonverbalgroup.com/2011/08/how-much-of-communication-is-really-nonverbal

UNDERSTANDING AGILE VALUES & PRINCIPLES

60

ly say is better than trying to conduct such a discussion when people:

Coding

Requirements
Analysis

Acceptance
Test Design

Acceptance
Testing

System
Design

System
Test Design

System
Testing

Architecture
Design

Integration
Test Design

Integration
Testing

Unit
Test Design

Module
Design

Unit
Testing

• cannot see one another;
• forget they are on mute and talk then must start again when remind-

ed they are on mute;
• do other things while supposedly listening and then ask for things to

be repeated; and
• try to talk at the same time then go silent, try to be polite and tell one

another to go ahead and speak, then wait in more silence until finally
someone does.

Email is at the very bottom of the Q&A line (and can include any form of
text messaging). It is interactive in a sense, but not at all guaranteed to be
real-time and it has its own issues. Some people like the long email dis-
cussion thread as a form of standard documentation. Some like it because
it guarantees others cannot deny what was said (which suggests trust is-
sues). Some like it because they don’t have to deal directly with other peo-
ple (see the “cube farm” example mentioned below).

As to the non-Q&A modes, I’d like to describe an example of videotape
being used at one place I worked. Instead of having someone at a design
discussion taking notes, writing them up, circulating them for edits/ap-

FACE-TO-FACE CONVERSATION

61

proval, then sending the document to clients for review, we videotaped
the session. (It was that long ago. There are certainly better video options
these days.) We’d copy the tape and send one to each stakeholder location.
They would watch the tape then communicate their thoughts back to us
and we could incorporate those ideas into the (ultimately still required)
design documentation. What was important was that the stakeholders got
to hear everything, not just what we thought was important to document.
This included things we might breeze by but the stakeholders picked up
on and never would have heard if we’d have sent our version of what they
should know. This led to changes that could have only been noted months
later when a lot of work had been done and the stakeholders got to see
some working software.

You must decide what modes work and when for your own situations, but
always ask whether it would be possible to move up and to the right on
Cockburn’s diagram.

Distributed teams
This principle does not say people must be co-located, only that it al-
lows the most effective communication to occur. If you are going to have
discussions among people who are not together in the same room, use
some form of video. These days, it doesn’t cost much at all to add a USB
camera if people are not at a machine with one built in. Unfortunately,
I’ve worked with teams who went months without knowing what one
another looked like. My first suggestion was to get pictures of everybody
at least. When these teams did get video going, the changes in the discus-
sion were clearly observable. People felt okay in calling on one another,
recognizing those puzzled/worried looks. People’s attention, or lack of it,
to the meeting could be noticed and they could be invited back into the
discussion. Putting faces to the disembodied voices over the phone helped
with team spirit, which led to increased trust.

But the key imperative for me is that we never let anyone go dark. That
is, we make sure everyone feels included in the team and has their chance
to contribute to the team. We don’t fall back on what’s easier to do (i.e.,
go down and to the left on Cockburn’s diagram). This may mean getting
some input/feedback using more text-based approaches, but sparingly.

UNDERSTANDING AGILE VALUES & PRINCIPLES

62

One US-based team I worked with had never had any distributed mem-
bers. Then, they added two team members in India. The US team held
daily meetings at 8:00 a.m. local time, which could not occur earlier due
to childcare considerations. During the non-Daylight Saving Time of the
year, that would be about 7:30 p.m. in India. Most companies in India
when they work with US companies will shift their work hours from per-
haps 10:00 a.m. to 7:00 p.m., so the stretch to 7:30 p.m. wasn’t so bad for
the two people in India. Sprint reviews were held at 8:00 a.m. as well and
often ran until 8:30 p.m. in India, but that was once every four weeks, so
still not too bad.

Since retrospectives followed the sprint review after about a half-hour
break (by then, 9:00 p.m. in India), the US folks and their Scrum Master
agreed that the folks in India did not have to stay on a call (or call back)
because it could be 10:00 p.m. in India by the end of the retrospective.
I heard about this and told the Scrum Master and local team members
that they can’t do that.” (They were used to me and saw this as an oddly
directive statement coming from me.) When they asked why I said “can’t”,
I simply told them that they could not exclude the members in India from
the retrospective process. They at least had to get the input from those
two people before the meeting if the two of them could not be in the ret-
rospective.

Sometimes as a coach, I get lucky. The next retrospective, that’s what
happened. Text input from the people in India was sent to the US and
was included in the topics discussed by the US members. At the end of
the retrospective, the highest-priority improvement item selected was
one of the inputs from India. The US members acknowledged that they
wouldn’t have come up with this on their own, but, discussing it, agreed
they should really work on that item.

Dealing with distribution
To overcome the disinclination to move even short distances to speak face
to face, one place had a rule that, after going back and forth three times
with emails or texting, people had to get up and go talk to the other per-
son. If the distance prevented physically going there, people should call
the other person or use some video-based technology to contact them
for real-time communication. If the time difference was also large, then
people should schedule a time when video communication could happen

FACE-TO-FACE CONVERSATION

63

and speak in real time that way. The idea was to make the effort to at least
simulate face-to-face contact rather than fall back on purely text commu-
nication.

I should mention an extreme example of distribution that I have wit-
nessed more than once. I’ve been in “cube farm” environments where
people sat in rows at cubicles walled off in front and to the left and right.
If you stood up, you could see over the partitions, but sitting down, it
could feel like other people did not exist. In such cases, I have seen people
send emails and text messages rather than get up and go to a cubicle near
them. It didn’t take 30 meters of separation. Sometimes, it was hardly 30
centimeters.

Another such process consideration is to never let people go dark — i.e.,
make sure everyone on a distributed team knows what is going on in the
same way that a face-to-face daily meeting could. For example, I once
worked with a team where:

• the product owner was alone in Denmark,
• a developer was alone on the East Coast of the US,
• a developer and tester were together on the West Coast,
• a few developers and testers were together in India, and
• the Scrum Master was alone in Singapore.

It was the most distributed team I’ve ever worked with yet among the
most effective and satisfied in their distributed form. The Scrum Master
and I (as coach) were on two meeting calls each day: one in the morning
(Pacific time zone) and one at night (Pacific time zone). At the end of each
meeting, the Scrum Master would email a short set of notes to everyone
on the team about what each session had discussed. People on the team
then proactively got in touch with one another when they needed to ex-
change more detailed information. It was not ideal, but they made it work
because they committed to trying to communicate more effectively rather
than falling back on creating and sending formal documents.

From my perspective, the absolute minimum would be to make sure peo-
ple can see one another whenever they meet over a distance. The use of
video dramatically improves the relationships among the people on a
team. Seeing one another puts a face and a real person to an otherwise
disembodied voice over a phone line. This increases the sense of being a
real team, which improves the collaborative inclinations and trust. Today,
there is no reason not to have video in a meeting.

UNDERSTANDING AGILE VALUES & PRINCIPLES

64

Daily meetings
You can read a lot about the purpose of the daily (standup) meeting as well
as what it isn’t (i.e., not a status-reporting session nor a problem-solving
one). Personally, I view it as the team’s opportunity to make sure everyone
knows what’s going on within the team and, hearing all that, deciding if
there is any need to make changes in the sprint plans. At the end of the
meeting, I would want every team member to feel comfortable with the
plan going forward for the rest of the iteration. The forms of data that the
team might collect in the meeting would be things such as:

• what each person says about what they did since the last meeting,
what they plan for that day, and any things in their way (the classic
three items recommended for such a meeting);

• the state of the team’s progress using some quantitative assessment
(e.g., a burn-down chart); and

• input they may request from people outside the team (who may or
may not be present at the meeting).

This last point raises the question of who participates in this meeting. It is
specifically for the development team, with their Scrum Master/facilita-
tor helping (especially by keeping a “parking lot” of items to discuss after
reaching the daily meeting’s 15-minute limit). It is not a secret meeting,
so I have seen product owners there, people from other teams present,
myself standing by, and even management sometimes observing. But all
of us not on the development team keep quiet unless we are asked to com-
ment. If we really want to address the team, we should contact the Scrum
Master ahead of time who, with the team, could decide if such a request
should be fulfilled at the meeting or afterwards. (If they decide they want
to say something during the meeting, they could ask if there might be
time for their comments at the end.)

After the meeting, the Scrum Master/facilitator can point to the parking
lot if there are any notes there, and the team can decide who must be
present and how to address any issues noted. With a distributed team, the
invitation to the call might indicate 30–60 minutes, but the first 15 are
reserved for the daily meeting. The rest of the time is to allow for other
discussion when and if necessary, not an indication that the daily meeting
will take all that time.

I know of at least one organization of around 50 people where all staff
participate in the daily meeting. They work in pairs, so it is like 25 people

FACE-TO-FACE CONVERSATION

65

speaking. They complete their daily meeting within that 15-minute time-
box. People cover their three main statements in 15–20 seconds each on
average, making it easy for 25 people to finish in 15 minutes.

Iteration reviews
This meeting, held the last day of the iteration, is for the development
team to show to all stakeholders what they have accomplished in the it-
eration. It is an opportunity for those stakeholders to hear from the team
and for the team to get feedback from the stakeholders. The team can hear
directly how the stakeholders feel about the work that is presented. Any
changes needed can be identified and put on the product backlog for a
future iteration. There are, however, some things I’d suggest people keep
in mind about the meeting.

Generally, the team members demonstrate their work, but there can be
occasions when it would be appropriate for a product owner to do so
(assuming the product owner has been closely in touch with the team
and knows how to do so). This might be because of language differenc-
es between team members and stakeholders or because a product owner
knows better how to speak in stakeholder terms. (If this latter point is
true, I would suggest an improvement item would be for the team to learn
more about how to engage the stakeholders at their level so no intermedi-
ary is necessary in the meeting.)

The meeting is not for internal people (e.g., managers within the develop-
ment company) to engage in debates with one another in front of other
stakeholders or to ask, because they have missed some prior reviews, that
prior issues be restated/explained for them. I’ve seen both things happen
more than a few times. The product owner or Scrum Master/facilitator
needs to step in and, as politely as possible, cut this sort of thing off and
deal with it outside the public forum of the iteration review.

Sometimes, especially when people are calling in to the review rather
than being in the room with the team, the response from stakeholders at
the end of a particular demo of functionality or at the end of the review
may be little more than “nice job” if not, in fact, dead silence. That’s not
much feedback for the team to. The product owner, (supposedly) know-
ing the stakeholders, should try to encourage more substantive feedback.
They can ask specific stakeholders to comment on something they know

UNDERSTANDING AGILE VALUES & PRINCIPLES

66

was of major interest for that stakeholder, politely putting the stakehold-
er(s) on the spot, as it were, to say something. Discussion at the review is
important. It should not be a one-way show-and-tell session by the team.

PART 13
Working Software… Again?

UNDERSTANDING AGILE VALUES & PRINCIPLES

68

“Working software is the primary measure of progress.”

Wait… wasn’t working software one of the Agile Manifesto’s values? Yep.
So they repeated it again. Yep… they did.

I asked one of the manifesto authors about this and his first comment was,
“Well, we thought it was important enough to repeat.”

Of course, it isn’t exactly a repetition. The value states the preference for
having working software over only having comprehensive documenta-
tion. This principle states that working software is the main progress
metric.

Measuring progress
Progress in projects traditionally has been measured by completion of
tasks in the project plan and how closely that tracks to expected com-
pletion: i.e., numbers of tasks completed and whether they complete at
the time originally estimated. In a traditional waterfall project, a substan-
tial number of tasks will be completed before there is any actual software
working, i.e., before functionality is designed, coded, reviewed, tested,
and documented. Indeed, a project schedule can be from two-thirds to
three-quarters completed (with all the associated tasks) before there is
any software verified and validated.

One approach to traditional tracking that associates tasks done with proj-
ect value is earned-value measurement. Very simply, one assigns a dollar
value to tasks based on the hours estimated and an estimated cost paid for
those hours of work. This can mean something like deciding the cost per
hour paid to a person who performs such tasks and multiplying that by
the hours assigned to the task. Or it may mean taking the total estimat-
ed cost of the project (however that is computed) and dividing it equally
across all the tasks based on the percentage of hours each represents for
the entire project. Either way, this gives a value for each task performed.
As a task is completed, its value is earned, accumulating throughout the
project.

But this doesn’t, and nobody suggests it should, represent value delivered
to the customer. It just means, given that every task is needed, that tasks
and hours spent can be used to track percent completion. Hence, it is a
progress measurement since it shows how much of the work of this proj-

https://www.pmi.org/learning/library/earned-value-management-systems-analysis-8026

WORKING SOFTWARE… AGAIN?

69

ect has been completed at any time. As you will see if you check Wiki-
pedia, there are a variety of numbers that can be calculated and used to
compare planned to actual progress.

The agile approach simply takes the position that progress should be mea-
sured based solely on how much working software exists at any point in
time. One could use story points, for example, instead of hours or dollars
as the baseline number. As the team completes requirements, the value
is expressed in completed points and you can compare that to the total
points for the entire project/release to compute percent completed.

Burn-up chart
One common visual tracking approach for this is a burn-up chart. The
diagram shows a simple form of this.

day
1

0

Story points Done

5

10

15

20

25

30

35

day
2

day
3

day
4

day
5

day
6

day
7

day
8

day
9

day
10

The vertical axis represents story points while the horizontal one rep-
resents time (in this case, days in the iteration). The green line is an ideal
or baseline drawn from zero story points done at the start of the iteration
to the total number of story points planned for the iteration (35 in this
example). The blue line tracks the actual number of accumulated story
points completed day by day in the iteration.

From this, the team and product owner (and anyone else for that matter)
can see the progress the team is making toward completing all the stories
they planned for the iteration. Being under the ideal (red) line means the

https://en.wikipedia.org/wiki/Earned_value_management
https://en.wikipedia.org/wiki/Earned_value_management
https://www.jrothman.com/mpd/project-management/2016/02/value-of-burndown-and-burnup-charts/

UNDERSTANDING AGILE VALUES & PRINCIPLES

70

team is behind in completing stories. Being above the ideal line would
mean the team is ahead. The chart does not explain why a team might be
behind or ahead, just that it is.

From a product owner’s long-term view, the chart could show total points
for an entire project/release with the time element being iterations in the
project/release rather than days in a single iteration. Both forms can be
used. If a team has relatively small-sized stories that they complete reg-
ularly, a chart of daily iterations produces a somewhat smooth-looking
graph. If the team has larger stories that take many days to complete, you
get a more stepped graph, which means that the graph is flat for days at
a time until a stories get done, and then it jumps up as those points are
recorded. The full project/release version will produce a stepped graph
since points are only recorded at the end of each iteration, but it will be
a smaller-looking jump each time given that the chart tracks an overall
larger baseline of points.

(I should note, however, that simply counting stories completed com-
pared to total stories for the iteration/release is another approach used
without using points. Such an idea can be found described in:

Do You Need to Use Story Points to Track Velocity – an IBM article

How estimating with story counts worked for us – a ThoughtWorks ar-
ticle

Story Counting – a Martin Fowler blog post

Stop Using Story Points – a Joshua Kerievsky blog post

How to Enable Estimate-Free Development – a Dave Rooney blog post)

Definition of done
Briefly, to claim that you have a piece of working software, all the quality
criteria established are expected to be met. This set of criteria is typically
called a Definition of Done. If all the criteria are met, everyone on the
team agrees that the requirement is done. Teams should have agreed upon
such a set of criteria (at least as an initial example) before starting any
work. During a project/release, they will likely adjust the criteria, perhaps
formally reviewing it as a part of the retrospective.

https://www.ibm.com/developerworks/community/blogs/beingagile/entry/Do_You_Need_to_Use_Story_Points_to_Track_Velocity?lang=en
https://www.thoughtworks.com/insights/blog/how-estimating-story-counts-worked-us
https://martinfowler.com/bliki/StoryCounting.html
https://www.industriallogic.com/blog/stop-using-story-points/

WORKING SOFTWARE… AGAIN?

71

Sample items that might be found in a definition of done would address:

• design tasks to be performed,
• coding needed and coding standards to be used,
• unit testing expected,
• peer (or other) reviews to be done,
• user documentation to create or update,
• successful build and test runs,
• customer acceptance criteria met (often called conditions of satisfac-

tion),
• non-functional requirement expectations for things such as perfor-

mance and security, and
• any internationalization and localization concerns.

Such criteria would be expected to be used for any requirement, though
some may not need all the criteria, and some might need additional cri-
teria.

Having met the criteria, the work would be shown at the next iteration re-
view for approval by customers/stakeholders, and the story points would
be counted as completed. This would be the measure of progress, regard-
less of other possible deliverables that might (have to) be generated to get
to this point.

PART 14
Sustainable Development

UNDERSTANDING AGILE VALUES & PRINCIPLES

74

 “Agile processes promote sustainable development. The sponsors, devel-
opers, and users should be able to maintain a constant pace indefinitely.”

Sustainable development
Sustainable development is a development approach that can be conduct-
ed over time without burning people out. Agile advocates avoiding man-
dated overtime. If the latter exists, people are not taking a reasonable ap-
proach to planning work. Some might say, given how their organization
works, that this ignores reality. As I mentioned in Chapter 11, agile does
not ignore reality but aims to change reality.

It is not merely the agile view that it’s a bad sign to have to routinely
employ overtime to meet a deadline. At least by 1997, one of the main
proponents of classical software methodologies noted how common the
so-called “death march” projects were. The Project Management Insti-
tute also identifies such an approach as undesirable, citing an article de-
scribing many signs of project trouble related to the death-march men-
tality.

A particularly scary sign is when a project starts with overtime already
required to meet the deadline with all the functionality expected. What
happens when the unexpected happens during the project? Where does
the time come to handle that? Even more required overtime?

Tom DeMarco wrote an interesting book (Slack: Getting Past Burnout,
Busywork, and the Myth of Total Efficiency) just as the agile movement
was getting started (2001) discussing filling (and overfilling) people’s time
and what that means for effectiveness, including the impact of multitask-
ing.

Constant pace indefinitely
The idea of a constant pace is the idea of working within a predictable
rhythm, which the agile iteration and its various elements (i.e., iteration
planning, daily meetings, reviews, and retrospective) offer. I have worked
with teams that have continued together (with not very frequent person-
nel changes) for almost a decade. They are still going. These teams have

http://agileforall.com/agile-antipattern-working-overtime/
http://www.informit.com/articles/article.aspx?p=169512
http://www.informit.com/articles/article.aspx?p=169512
http://www.informit.com/articles/article.aspx?p=169512
https://www.pmi.org/learning/library/changing-death-march-project-parade-6066
https://www.pmi.org/learning/library/changing-death-march-project-parade-6066
https://www.pmi.org/learning/library/ten-troublesome-pm-ideas-combat-6715
http://www.systemsguild.com/tdmbooks/SlackIntro2.pdf
http://www.systemsguild.com/tdmbooks/SlackIntro2.pdf

SUSTAINABLE DEVELOPMENT

75

worked iteration after iteration (13 a year using a four-week iteration
length) and been through well over 125 such iterations. The ability of
team members to work together smoothly and effectively is an asset to
the company. Deliberately splitting the people up, scattering them to oth-
er efforts, treats them like an inanimate resource that can be shifted with
no loss to the essence of what that resource represents.

The challenge to an organization is to maintain such teams. This is far
easier in a product-oriented company than in a project-oriented one. At
the end of most projects, teams may routinely split up as people are as-
signed to new projects. In a product environment, the team stays with
the product, release after release, building significant domain expertise as
well as growing their skills and ability to work together. I have seen such
teams plan with very few words exchanged other than those that help
clarify the functionality they are to create during the upcoming sprint.
Someone will say, “I can handle that” and that ends the discussion on that
point. They have learned that when anyone says something, they mean
it and will do it, and they also know that if they need help, other team
members will support them. Communication and trust are high on such
teams (though the verbiage needed to communicate is low as much is
“said” through actions, not words).

What may be more challenging is the ability of sponsors and users to
maintain such a pace because such a steady commitment to work with
a development team is not usually something they are used to doing (as
noted in Chapters 9 and 10).

PART 15
Technical Excellence

UNDERSTANDING AGILE VALUES & PRINCIPLES

78

The first eight principles in many ways describe what might be viewed as
the organization helping to make the work of teams more effective and
less stressful. The last four principles, viewed in one way, are specific ob-
ligations for teams to pursue to respond in an agile fashion.

“Continuous attention to technical excellence and good design enhances
agility.”

Continuous attention
Part of the urgency which agile teams are encouraged to pursue includes
a focus on continuous improvement. Agile teams and individual members
should always be thinking about what they can do to improve how they
work. This can happen any time during an iteration. The retrospective is
just to imbed such a focus as a formal part of the agile cycle. The idea of
continuous attention means always looking around, noticing what is go-
ing on in the team, and considering how things could be better.

For example, at the end of each work day, members could take perhaps
five minutes to consider their day and ask themselves what they could do
tomorrow to help the team work better. I would expect this kind of think-
ing on the part of the team’s facilitator (e.g., Scrum Master) and product
owner, but it is something anyone on the team could consider.

Technical excellence
One critical improvement to consider is how to grow the technical abil-
ities of the team members. One team I worked with decided that they
would like to get better at object-oriented development and decided to
use Robert Martin’s book Clean Code to do so. However, the book is 464
pages long. They were not going to do this in one sitting. They chose to
have each person on the team individually take on a chapter during an
iteration and spend some time to prepare a presentation on the essence of
that chapter as part of their retrospective. The team would try to put that
idea into practice during the following iteration (while the next person in
line tackled the next chapter of the book). It took them many sprints to
get through the book’s 17 chapters, but they did it and felt it was worth-
while to take the time to do so.

https://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882/ref=sr_1_1?ie=UTF8&qid=1522707336&sr=8-1&keywords=robert+martin+clean+code

TECHNICAL EXCELLENCE

79

Testing practices are another area where becoming better will lead to
greater agility. Being able to test frequently and easily will encourage
more complete test coverage and help ensure new changes do not break
existing functionality. (Recall the two company examples about frequent
testing in Chapter 8.) With today’s IDEs, there is considerable support to
do this at the team level. This would reduce the likelihood that defects
escape the team’s iterations and cause problems (and rework) further into
the project/release.

Good design
What makes design “good” can mean different things to different people.
One way for a team to pursue this and avoid many ongoing arguments
about what “good” means is to develop/adopt a set of coding standards
for the team. One aspect of what “good” might mean is that code is easy
to maintain over time — i.e., people can go into the code to make changes
and not have difficulty understanding how to do so because of its struc-
ture and how things are named. They will then be less worried about
making such changes.

Another aspect of “good” might be adherence to certain object-oriented
design principles (the SOLID principles that Martin covers in his book).
For example, there is the single-responsibility principle. As Wikipe-
dia puts it, “every module or class should have responsibility over a single
part of the functionality provided by the software, and that responsibil-
ity should be entirely encapsulated by the class.” Before object-oriented
design was popularized, we used to talk about this as concern for “cohe-
sion”. Cohesion would be high when every part of a module was related
to accomplishing one thing. (A related SOLID principle is dependency
inversion, which we used to call “coupling”. Coupling was low when a
module did not depend on how other modules carried out their work.
This allowed changes in modules that did not ripple through other parts
of the system.)

Regardless of what the actual standards are, having the entire team agree
to them (and constantly look to see if improvements can be made in them)
is important.

https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle

UNDERSTANDING AGILE VALUES & PRINCIPLES

80

Enhances agility
How this all enhances agility is reflected in how such standards and ideas
improve the quality of the product and the ease with which it can be re-
liably changed. If you do not have to worry about whether changes can
be made safely, you are more likely to be willing to make more changes.
Thus, you can move quickly while maintaining your balance, i.e., your
system stability.

PART 16
Simplicity

UNDERSTANDING AGILE VALUES & PRINCIPLES

82

“Simplicity — the art of maximizing the amount of work not done — is es-
sential.”

The principle is rather straightforward. All the engineers I’ve met believe
in this idea. The goal is not to over-engineer something. Ward Cunning-
ham speaks about working with Kent Beck. When they’d get stuck, Ward
said he’d ask, “Kent, what’s the simplest thing that could possibly work?”
Rather than sit and discuss for too long a time, the agile advice is to try
to make it work in the code, i.e., produce some form of working software
and determine whether what you have will address the design goal.

My mother taught me some basic cooking ideas when I was a grade-
school kid. A key one was “you can always add more but it will usually be
impossible to take it out.” Incrementally determining if the combination
of ingredients is good allows you to test the mixture at some level. If you
go too far without such testing, you may end up either throwing it out
or adding more of some ingredients to balance out the excess of another,
producing more final product than you wanted, which may be wasted.

An incremental approach to a more complex design will make it easier to
verify that where you are at any moment seems to be working. It will also
allow you to back up to a prior stable state more easily. It can also avoid
“goldplating”: the tendency to add more than was requested/needed.

Of course, just doing simple things all the time isn’t a commandment.
You’d ask this question “if you’re not sure what to do yet”, as stated in Cun-
ningham’s wiki notes. But thinking in simple terms whenever possible is
essential to good design practice.

https://www.artima.com/intv/simplest3.html
https://www.artima.com/intv/simplest3.html
https://www.artima.com/intv/simplest3.html
https://www.artima.com/intv/simplest3.html
http://wiki.c2.com/?DoTheSimplestThingThatCouldPossiblyWork
http://wiki.c2.com/?DoTheSimplestThingThatCouldPossiblyWork
http://wiki.c2.com/?DoTheSimplestThingThatCouldPossiblyWork

PART 17
Self-Organizing Teams

UNDERSTANDING AGILE VALUES & PRINCIPLES

84

“The best architectures, requirements, and designs emerge from self-or-
ganizing teams.”

The best
I hear the most controversy expressed about this principle because people
think it implies that a team of non-experts can presumably come up with
better ideas/solutions than a skilled, experienced expert. The ideas of ex-
perts would certainly be included. Indeed, have the expert be a member
of the team. This harkens back to the principle of giving the team the
environment and support needed to do the work expected.

Regarding the prerequisites, about 14 years ago a book was published
called The Wisdom of Crowds. It spoke about how a group could come up
with a better decision than any individual member of the group, including
an expert. However, it wasn’t just any group that could do so. There were
some prerequisites (with my agile-related comments):

• Everyone in the group would have individual perspectives and
ideas — have a cross-functional team of people motivated to come up
with a good solution.

• People’s opinions would not be (unduly) influenced by others — avoid
groupthink.

• It’s possible to draw on diverse knowledge — information is not with-
held from the group.

• There is a way for all the opinions to be aggregated in some way to ar-
rive at a collaborative decision — people can communicate with one
another freely.

The belief is that the collective decision, given these prerequisites, would
end up better than if the expert were left alone to come up with the solu-
tion.

Self-organizing teams
The phrase “self-managing, self-organizing teams” is used to indicate that
teams both organize themselves as they see fit to accomplish work for
each iteration and then manage themselves to do that work. Whatever

https://en.wikipedia.org/wiki/The_Wisdom_of_Crowds

SELF-ORGANIZING TEAMS

85

is within the team’s scope is for the team to decide how to carry it out.
This means that teams do their own estimates, determine their own tasks,
work together and individually to perform the tasks, present their work
at the end of each iteration, and verify with those outside the develop-
ment team (e.g., product owner, other teams, management, customers)
that the work meets expectations.

It can take a while for a team to understand how to do this as many people
are accustomed to following directions from others. That is, a manager of
some sort will have made (or at least been required to approve) many of
the decisions that agile teams are expected to do for themselves. This does
not mean managers have no place in an agile environment (though some
early agile material sounded that way). However, the goal for managers
is to take a servant-leader approach concerned with providing the team
with whatever they need to be successful rather than to expect the team to
behave in a way that the manager is looked on as the success.

I had a manager once who knew very well what agile was about. He was,
however, very sharp and was used to being directive in how he approached
his teams. He came to me once and said, “I know I am not supposed to
interrupt the team and tell them what to do, but I am worried this team
is not following the agile approach well. I don’t think they use the retro-
spective effectively.” That is a legitimate concern; a team should be trying
to use the retrospective effectively. What I told him was, “The next time
the team is due to have a Retrospective, go up to the Scrum Master a short
while after that and say, ‘Is there anything the team came up with at the
Retrospective that I can help with?’” This does three things without being
directive or intrusive:

• it makes clear the expectation that the team held the Retrospective;
• it makes clear the expectation that the team came up with some im-

provement item(s) to pursue;
• it offers to help them achieve the improvement(s) where possible.

If the manager got some sort of “deer caught in the headlights” response,
he could pursue the subject a bit further by asking, “Was there difficulty
in holding retrospective or settling on improvement items to pursue?”
Again, the manager would be asking, not telling, but expecting some rea-
sonable answer.

Teams can still be encouraged to self-organize and manage with this ap-
proach, but it would be made clear that they are expected to do so.

PART 18
Team Reflection

UNDERSTANDING AGILE VALUES & PRINCIPLES

88

“At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.”

It is somehow appropriate that this is the last principle, given that the first
value is about individuals and interactions. I think this principle is sig-
nificantly linked to that first value. Retrospectives are a key aspect of how
individuals interact in an agile context. Unfortunately, retrospectives, due
to schedule pressures, can be skipped when it is felt by (or communicated
to) a team that there is no time to hold the retrospective.

This last chapter will be somewhat longer than any of the others because
I believe there are a lot of important things to say about retrospectives.

Regular intervals
The point of the retrospective is continuous improvement. To be con-
tinuous means improving with some frequency. The minimum frequen-
cy is at the end of every iteration. The classic “lessons learned” or “post
mortem” sessions would occur only after the end of an entire project or
release. There are several problems with this:

• At the end of a project/release, people are often dispersed to new
projects/releases, making it hard to get them together for such a ses-
sion.

• Since such sessions occur usually months after the start of the project,
some people may not even be around to participate and those who
are may not remember the things they thought of months ago, which
could be mentioned at the session.

• A lot of what is discussed in such sessions is about the things that
went wrong and how to fix them for the next project/release, so the
sessions don’t help the project that just ended.

• The sessions are often management-driven events at which some
people may not want to speak up because of concern for how they
might be viewed if they raise an issue folks would rather not face.

For reasons such as this, the frequency (and participants mentioned be-
low) are why retrospectives are expected to be held as they are.

On the other hand, reflection and adaptation does not have to wait until
the end of the iteration. There is an opportunity for this daily as a team

TEAM REFLECTION

89

and individually. The daily meeting may raise issues that the team should
address immediately instead of adding them to a list for the end of the
iteration. At the end of each person’s day, they can ask themselves, “What
can I do tomorrow to make our team more effective?” I would expect a
team’s facilitator, at least, to do this.

The team
Who should participate in the retrospective? The Scrum Guide states that
it’s for the Scrum team and defines that team as consisting of “a product
owner, the development team, and a Scrum Master”. The latter two are
rather universally seen as participating, but that is not always true for the
product owner. Sometimes, development teams look upon the product
owner as management. As managers are not included in the retrospective,
product owners frequently get excluded, too. This is unfortunate since
they have direct connection to the work done and clearly have opinions
like anyone else on the Scrum team about how things went during the
sprint.

I believe there can be approaches to involving a product owner in the
retrospective that do not completely exclude them:

• They could attend the beginning of the retrospective, be heard and
engage in some discussion, then leave.

• They could offer their perspective to the Scrum Master before the
retrospective and those ideas, at least, could be provided for consid-
eration in the retrospective.

Neither of these are ideal, but they are better than total exclusion. In both
cases, the product owner should receive feedback on what happened to
their ideas and what the development team came up with as improve-
ments.

(I do realize that some teams may have some private issues they wish to
work on, but there should be some improvement(s) that can be shared
publicly.)

https://www.scrum.org/resources/scrum-guide?gclid=EAIaIQobChMIvInRnt6o2gIVSC-BCh3NLQ3hEAAYASAAEgLPNfD_BwE

UNDERSTANDING AGILE VALUES & PRINCIPLES

90

Become more effective
The idea of continual improvement goes back at least to the early lean
work in Japan after World War II. It is known as kaizen in that context.
Improvement does not have to be some large change, just continuous
change for the better. Even something that seems to work well might
work even better and can perhaps be improved upon.

Certainly, the retrospective is not just about “fixing” things that didn’t
go well. I have heard teams say they don’t need to hold a retrospective
because everything went fine in their iteration. This has always indicated
to me that they view the retrospective as a problem-fixing meeting. No
problems; no meeting. Since the goal is about improvement, unless a team
thinks they are perfect at being predictable, being productive, and pro-
ducing defect-free work, there is always something to improve.

A typical focus of such meetings includes:

• What went well that a team would like to keep doing, i.e., make a part
of their regular work process?

• What didn’t go so well and should be changed for the better (or per-
haps dropped as not useful)?

• What could be tried that the team has not yet tried, i.e., learn some-
thing new or experiment with a new idea?

If a team feels that don’t have anything in that second category, they
should still consider the other two.

Tune and adjust
One common problem that often inclines teams to abandon retrospec-
tives is that they make lists of improvement ideas but end up doing noth-
ing to improve. After doing this a few times, the team will wonder why
they should bother.

It is imperative that teams move from list making to prioritizing their
ideas, selecting some (maybe one is enough), determining what it will take
to pursue the improvements (e.g., tasks, effort estimates), and commit-
ting to follow through on one or more. I have seen some teams create an
improvement backlog where improvement ideas are treated like require-
ments.

https://en.wikipedia.org/wiki/Kaizen

TEAM REFLECTION

91

At the daily meetings in the next iteration, the team facilitator could ask
about the items the team said they would try to pursue as improvements.
This could help the team remember which items should get attention
during the iteration.

At the next retrospective, these items should be part of the input to con-
sider, i.e., how did the team do in working the items during the iteration?

Retrospective “smells”
Besides endless list making that goes nowhere, other things may discour-
age a team from conducting retrospectives or using them effectively:

• Boring/repetitive process — Conducting the retrospective the same
way every time can become boring. The classic brainstorming ap-
proach of going around the room with each person offering up an
idea, having it noted down, and doing that until everyone thinks they
have no more to say seems rather boring to me. At the very least, it
does not engage the whole team right away as people have to wait for
each person to say something (or pass) before anyone else speaks. If
someone has a lot of ideas, many people are going to sit there until
that one person runs through their list. Also, hearing what one person
says may incline people not to repeat a similar idea as they do not
want to seem redundant, though the difference in how it is presented
would be useful to hear.

• Victim of others — Sometimes most of the things a team talks about
are problems that come from people outside the team, which, while
perhaps true, can result in the team feeling there isn’t much they can
do to change things because it is others who must change/improve.
A facilitator, while acknowledging the truth of what is said, needs
to ask, “What could we do about this? Who might help us with this
issue? How might we help ourselves?”

• Blaming session — This occurs most often if there is not a sufficient-
ly trusting and collaborative spirit on the team. People will look for
whose fault it was that they faced various problems. You want to ad-
dress issues, but not so people are put on the defensive. Avoiding ac-
cusative words like “you”, “they”, he”, or “she” and substituting “we”
helps a great deal. Handling this may require using some anonymous
data collection (see below) as people may simply not raise the issues

UNDERSTANDING AGILE VALUES & PRINCIPLES

92

to avoid the blaming, but the issues nevertheless probably need to be
heard.

• Issues that are hard to talk about — People may avoid raising issues
that are specific to individuals on the team, while perhaps important
to address, because it is uncomfortable to do so. Issues may be raised
in a way that promotes defensiveness and destructive discussion, like
blaming.

While the retrospective is an important team activity, it may also be the
hardest one for a team to engage in effectively. The fundamental consid-
erations of communication, collaboration, commitment, continuous im-
provement, trust, and excellence discussed in Chapter 2 are particularly
important in the retrospective context.

Some retrospective ideas
I have some strategies to try in retrospectives that I have used myself or
with teams.

To allow the team’s facilitator/Scrum Master to participate as a Scrum
team member and not have to “switch hats” from that role to contrib-
ute ideas, get an outside facilitator to run the session. This could be an-
other team’s facilitator/Scrum Master; the two could agree to run one
another’s retrospectives, bringing in an otherwise uninvolved person to
facilitate the meeting. You could also go to your training (or perhaps HR)
department and look for someone trained in facilitating meetings and
have them do it. This also serves a useful purpose in introducing people
outside the agile effort to a bit about the process. I’ve also had teams who
rotated facilitation among team members. Each iteration, a different team
member prepared for facilitating, looking for new and different ways to
possibly run it. This has the advantage of getting everyone to self-manage
this activity.

As noted above, the traditional brainstorming approach has potential
problems in collecting feedback. A simple way to overcome many of
these is to ask people to write their ideas down on note cards or stickies.
This allows everyone to be busy at once and to be able to get out as many
ideas as they like without anyone having to wait for a turn to do so. When
people seem to have exhausted their ideas, you can have everyone get up
and put their ideas up on a wall, board, etc. possibly under categories like

TEAM REFLECTION

93

“People,” “Culture,” “Process,” “Environment,” and “Tools”. This begins the
process of grouping ideas together (affinity) for further consideration. It
also makes it easy for people to step back, look at the overall patterns, and
reflect on those before diving into the details of each specific idea. When I
have done this, I usually say the categories mean the following:

• People — interactions among individuals;
• Culture — the organization’s beliefs about interactions;
• Process — the ways people work to get things done;
• Environment — the physical environment in which people work;
• Tools — the things people use (manual or electronic) to do their work.

It is almost always the case that the volume of stickies skews toward the
first couple, then less for the third, and fewest for the last two. I think you
can guess the kind of discussion that ensues when people see this, regard-
less of how obvious it might be. Seeing the “obvious” presented physically
just drives home the impression.

I also used this approach and categories when a Scrum Master asked me
to run a retrospective because they felt it would turn a bit ugly due to what
had gone on during the sprint. I started the retrospective by acknowledg-
ing that I had heard the team had a rough sprint. I asked that instead of
writing down ideas about the things that went badly, they should write
how they would have liked things to have happened and put them up un-
der these categories. Then I asked them to discuss how they thought they
could make these things happen. This turned into a much more positive
retrospective than the Scrum Master had (probably rightly) feared.

Collecting Feedback
One issue with collecting feedback can be doing this openly versus more
anonymously. If people are reluctant to raise issues for any reason, per-
haps some form of anonymous data collection could work. People could
still write things down as noted above, but perhaps they’d all be handed in
and shuffled before dealing with them further.

I had a Scrum Master ask me to facilitate a retrospective because he want-
ed to raise the issue of how people felt about teamwork, but he was not
sure if people would speak up and was concerned that the feelings were
somewhat negative. I asked people to rate their sense of teamwork/spirit
on a 1–5 scale (worst to best) and write that number on an index card

UNDERSTANDING AGILE VALUES & PRINCIPLES

94

which they would hand to me to and I’d shuffle up. A “1” meant they felt
the spirit was bad and a “5” meant they felt it was wonderful, etc..

X X X X X

1 2 3 4 5

X X
X
X
X

Bar chart.

As I would read out the numbers and the Scrum Master would create a
“bar chart” like this, putting an “x” whenever a specific number was read
out, stacking each “x” when the same number was read out again. I then
asked everyone what they thought of the Team’s overall data. Some folks
were surprised it was not more negative. Everyone could see perhaps
there was some work to do but it wasn’t as bad as many feared. Even one
of the most frequently disengaged members spoke up a lot.

The Five “Whys”
One technique for dealing with the data collected is called the “5 Whys”
and is a root cause analysis approach. You take an issue and ask why that
seemed to be true, then ask why that response might be true, and repeat
this until you think you’ve hit the root cause rather than just symptoms of
the root cause. For example, a team might say, “We have problems getting
stories done each sprint.” In response to why they think that happens,
they could say, “Because other teams we depend upon don’t deliver what
we need.” Asked why they think that happens, they may say, “Because co-
ordination with them is hard.” And this could continue until it was felt
something was stated that could be changed, A solution would ripple up
the line of issues to help the overall problem.

https://en.wikipedia.org/wiki/5_Whys

TEAM REFLECTION

95

Data “Tools”
There are also a variety of what can be called tools that help collect, orga-
nize, and visualize data. A book called The Quality Toolbox, published by
the American Society for Quality (ASQ) and also available on Amazon, is
filled with examples and explanations of such tools. I have used many of
the examples, which include traditional graph types like those in spread-
sheet programs and more sophisticated things such as statistical control
charts.

Usability

Application Architecture

Current State

Desired State

Version Control

Timeliness

Efficiency

Effectiveness

Interoperability

Reliability

Kiviat diagram.

One I like a lot is the Kiviat diagram, also called a spider chart or radar
chart. Topics for which feedback is desired are listed around the outside.
The radial lines would usually have tick marks with those closer to the
center being the low end of the scale and the outer end being higher. For
each topic, ask people to provide numeric values. In the example above,
two such values are requested: where people would like to be (blue line)

https://www.amazon.com/Quality-Toolbox-2nd-Nancy-Tague/dp/8174890211/ref=sr_1_3?s=books&ie=UTF8&qid=1523132184&sr=1-3&keywords=the+quality+toolbox

UNDERSTANDING AGILE VALUES & PRINCIPLES

96

and where they feel they are (green line). Now you can average the data or
plot each person’s two values, connecting the lines as shown. Again, step-
ping back allows all to see what the chart tells you about the areas where a
desired state is furthest from actual. Then you engage in discussion about
what to do about what you see.

Another idea is something like the sailboat exercise originally created by
Luke Hohmann. (This specific diagram comes from Luis Gonçalves’ web-
site and can also be found in his and Ben Linders’ book Getting Value out of
Agile Retrospectives, which started as a mini book on InfoQ: https://www.
infoq.com/minibooks/agile-retrospectives-value). Besides this depiction,
I have also seen pictures of a sun and a shark added to such a diagram.

Sailboat diagram.

People write down their ideas on stickies then put them where they think
they belong on the diagram. The meaning of the individual images could
be:

Palm Trees — what the Team goal/vision was for the iteration;

• Rocks — the risks the Team faced and may have hit (the stickie is on
the rocks) or avoided (so the stickie is not exactly on the rocks);

https://www.innovationgames.com/
https://luis-goncalves.com/sailboat-exercise-sailboat-retrospective/
https://luis-goncalves.com/sailboat-exercise-sailboat-retrospective/
https://luis-goncalves.com/sailboat-exercise-sailboat-retrospective/
https://luis-goncalves.com/sailboat-exercise-sailboat-retrospective/
https://www.infoq.com/minibooks/agile-retrospectives-value
https://www.infoq.com/minibooks/agile-retrospectives-value

TEAM REFLECTION

97

• Anchor — something that held the Team back or “weighed them
down”;

• Wind — something that moved the Team forward;
• Shark — something that “bit” the Team during the iteration;
• Sun — something that “brightened the day” for someone.

Again, after all the stickies are up, you stand back and get an overall sense
of what the image suggests with the stickies present. Then you can decide
where to begin your more detailed focus.

Finally, there is what I call the “running retrospective”, which, as far as I
know, I invented. I certainly did not copy from anyone knowingly when I
came up with it several years ago. You take a piece of long, wide (“butch-
er”) paper and draw a horizontal line that represents the iteration. Each
tick mark on the line represents a day in the iteration.

Running retrospective.

Throughout the iteration, at any time, a person could write a note and
stick it on the mark for that day. I presented this to a workshop table at a
Scrum Gathering and Alistair Cockburn was part of the table. His won-
derful suggestion was to have people put the stickies (a) above the line if
it was a positive experience (and the higher above the more positive), (b)
below the line if negative (and the lower, the more negative), or (c) on the
line if it was just an observation that the person wanted to make with no
strong feeling one way or the other.

At the retrospective, there would already be a lot of data (to which more
could be added) and that might move the retrospective right into discus-
sion and selection of worthwhile improvement ideas. Of course, people

UNDERSTANDING AGILE VALUES & PRINCIPLES

98

could see patterns forming throughout the iteration and might want to
address something they see before the next scheduled retrospective (since
the need/decision to improve need not wait to the end of the iteration).
But the overall idea is that idea collection runs throughout the entire it-
eration.

What next?
There are certainly many more things that can be said about retrospec-
tives. Just type into your browser “agile retrospective exercises and games”
(or some combination of the words) to find plenty of ideas. There are also
books such as Agile Retrospectives and Project Retrospectives that you can
look into.

Whatever you do, do not allow people to give up on the retrospective.

https://www.amazon.com/Agile-Retrospectives-Making-Teams-Great/dp/0977616649/ref=sr_1_1?s=books&ie=UTF8&qid=1523134156&sr=1-1&keywords=agile+retrospectives
https://www.amazon.com/Project-Retrospectives-Handbook-Team-Reviews/dp/0932633447/ref=sr_1_1?s=books&ie=UTF8&qid=1523134206&sr=1-1&keywords=norman+kerth+retrospectives

EPILOGUE

99

Epilogue

Hopefully, this book has offered some worthwhile perspectives on the
Agile Manifesto’s values and principles. The next step is yours: trying to
put them into practice in your organization or situation. Use them to stop
and think rather than simply rush to do.

If you have not had any formal training in these ideas and the basic agile
lifecycle (or people around you have not), I strongly encourage you to get
that training. I’d then encourage you to seek some initial coaching to help
you get moving in a successful direction. Neither of these must, or should,
cost a great deal.

One older and two recent
perspectives
As noted in Chapter 1, there have been a variety of proposals for updating
the manifesto. Kent Beck, in 2010, spoke of one evolution of the Agile
Manifesto’s value statements:

Team vision and discipline over individuals and interactions

Validated learning over working software

Customer discovery over customer collaboration

Initiating change over responding to change

This thinking seems to fit nicely with two recent perspectives.

Four values and 12 principles plus many methods, frameworks, and prac-
tices — that’s a lot to absorb. A common question is just what the essence
of being Agile is all about. A couple of people have come up with some
short and I believe easily understood ways to think about this that I have
found particularly interesting.

https://www.youtube.com/watch?v=d4qldY0g_dI

UNDERSTANDING AGILE VALUES & PRINCIPLES

100

Modern agile
A few years ago, Joshua Kerievsky presented his ideas in a form he calls
“modern agile” to address what he felt was “antiquated agility”. I will let
his words (with some editing) speak for themselves and suggest, if they
sound interesting, that you investigate this further.

Modern agile.

Kerievsky has said:

• Make people awesome — In modern agile, we ask how we can make
people in our ecosystem awesome. This includes the people who use,
make, buy, sell, or fund our products or services. We learn their con-
text and pain points, what holds them back, and what they aspire to
achieve.

• Make safety a prerequisite — We actively make safety a prerequisite
by establishing safety before engaging in any hazardous work. We
protect people’s time, information, reputation, money, health, and re-
lationships. And we endeavor to make our collaborations, products,
and services resilient and safe.

• Experiment and learn rapidly — You can’t make people awesome or
make safety a prerequisite if you aren’t learning. We learn rapidly by
experimenting frequently. We make our experiments safe to fail so
we are not afraid to conduct more experiments. When we get stuck

http://modernagile.org/

EPILOGUE

101

or aren’t learning enough, we take it as a sign that we need to learn
more by running more experiments.

• Deliver value continuously — Ask how valuable work could be deliv-
ered faster. Delivering value continuously requires us to divide larger
amounts of value into smaller pieces that may be delivered safely now
rather than later.

Heart of agile
A few years before I encountered modern agile, I heard about Alistair
Cockburn’s proposed Heart of Agile as a succinct way to “get back to the
center of agile” after what he felt had been many years of “overly deco-
rated” ideas and practices. He feels that the four words in the associated
diagram “don’t need much explanation. They don’t need much teaching.
With the exception of ‘Reflect’, which is done all too little in our times, the
other three are known by most people. You know if you’re doing them or
not.”

Collaborate Reflect

Deliver

Improve

Heart of Agile.

http://heartofagile.com/

UNDERSTANDING AGILE VALUES & PRINCIPLES

102

These four words can be expanded as follows:

Collaborate

Trust

Experiment

Learning

Reflect

Change

Income

Collaboration Deliver Insights

Improve Improvements

Heart of Agile first-level expansion.

EPILOGUE

103

And even further into:

Collaborate

Trust

Experiment

Learning

Reflect

Change

Income

Collaboration Deliver Insights

Improve Improvements

TECHNICAL
COST MANAGE

QUEUES

SOCIAL
BUSINESS

LISTEN

STEP FORWARD

LET SOMEONE
ELSE DO IT

ALLOW FAILURE

EMOTIONAL
SAFETY

LIMIT
CHANGES

CONCRETELY
(SOLUTION FOCUS)

FOCUS
FORWARD

INCLUDE
EMOTIONS

RESULTS

GOALS

EARLY REVENUE

AGGRESSIVELY

Heart of Agile second-level expansion.

Cockburn reminds us that “the point of the Heart of Agile isn’t to pretend
that complexities and subtleties don’t exist; it is to remind us to scrape
away all the complexities from time to time, and restart from the begin-
ning.”

Over the years, I have always found Cockburn’s ideas and presentation of
those ideas significant. The first book of his I read, Agile Software Develop-
ment (revised in 2006), covers a wide scope of not just agile ideas but how
they relate and can blend with other ideas. Another of his books, Crystal
Clear, covers his own views on implementing an agile approach and con-
tains many interesting ideas.

One of those ideas is that there is more than one set of practices that a
project may need based on the perceived impact (loss) if a project is not

https://www.amazon.com/Agile-Software-Development-Alistair-Cockburn/dp/0201699699/ref=sr_1_2?ie=UTF8&qid=1523230114&sr=8-2&keywords=agile+software+development+alistair+cockburn
https://www.amazon.com/Agile-Software-Development-Alistair-Cockburn/dp/0201699699/ref=sr_1_2?ie=UTF8&qid=1523230114&sr=8-2&keywords=agile+software+development+alistair+cockburn
https://www.amazon.com/Agile-Software-Development-Cooperative-Game/dp/0321482751/ref=sr_1_1?ie=UTF8&qid=1523230192&sr=8-1&keywords=agile+software+development+alistair+cockburn
https://www.amazon.com/Alistair-Cockburn-Methodology-Software-Development/dp/B008WDIEWI/ref=sr_1_2?ie=UTF8&qid=1523230310&sr=8-2&keywords=crystal+alistair+cockburn
https://www.amazon.com/Alistair-Cockburn-Methodology-Software-Development/dp/B008WDIEWI/ref=sr_1_2?ie=UTF8&qid=1523230310&sr=8-2&keywords=crystal+alistair+cockburn

UNDERSTANDING AGILE VALUES & PRINCIPLES

104

successful combined with the number of people who must be involved in
the project. Greater potential for loss would suggest more rigorous ver-
ification and validation practices make sense. Larger numbers of people
imply more formal communication considerations.

Another is that he advocates building up your approach rather than tai-
loring it down. That is, start with an approach that is the simplest thing
that could work and add rigor where it seems needed rather than start
with a very rigorous, complex approach and throw away things you feel
you don’t need. It is better to encourage people to add rigor than to en-
courage the mindset of trying to get away with less.

105

Further Reading

I hope the book has interested you enough to consider some of the ideas
in it for your own practice of agile. Here are some books I think you
would find interesting to further explore Agile and Agile-related ideas:

Extreme Programming Explained by Kent Beck (explains development
practices and the XP approach to “managing” a project by the team)

Balancing Agility and Discipline by Barry Boehm and Richard Turner (a
book addressing dealing with more traditional, more rigorous develop-
ment demands while pursuing Agile ideas)

Management 3.0 and Managing for Happiness, both by Jurgen Appelo (a
book addressing complexity and management in complex situations and
a book about techniques, exercises, etc. to use in working with people and
teams)

Coaching Agile Teams by Lyssa Adkins (which is just what it sounds like,
offering advice to coaches, Scrum Masters, managers, and anyone who
wants to help teams grow and develop, including team members them-
selves)

Succeeding with Agile by Mike Cohn (implementation advice when work-
ing in a Scrum approach)

Essential Scrum by Ken Rubin (another “guide” to implementing Scrum)

Kanban by David Andersen (a key book on applying Kanban, especially in
a software context)

Scrumban by Corey Ladas (combining Scrum and Kanban approaches to
managing work and workflow).

Lean Software Development, Implementing Lean Software Development and
Leading Lean Software Development by Mary and Tom Poppendieck (apply-
ing Lean concepts to software development)

The Software Project Manager’s Bridge to Agility by Michelle Sliger and Sta-
cia Broderick (Michelle was one of the people that advised PMI in the
creation of their PMP-ACP program)

UNDERSTANDING AGILE VALUES & PRINCIPLES

106

Agile Product Management with Scrum by Roman Pichler and Scrum Product
Ownership: Balancing Value from the Inside Out by Bob Galen (Roman’s is
perhaps more frequently mentioned but Bob’s is good as well)

The Quality Toolbox by Nancy R. Tague (the ASQ publication mentioned
after the Kiviat diagram example)

The Scrum Guide (free PDF) by Ken Schwaber and Jeff Sutherland (just
type “The Scrum Guide” in your browser to find the site (scrum.org)
where you can download the latest version of the “definitive” definition
of what Scrum is all about)

107

About the Author

Scott Duncan has been in the software field for some 47 years as a de-
veloper, technology transfer researcher, process consultant, trainer, and
Agile coach. He has worked in fields such as book sales and distribution,
state government, mainframe database and natural language query prod-
ucts, telecom (14+ years in Bell Labs, Bellcore, Telcordia), credit card
transaction processing, and banking.

His most recent full-time role was as enterprise coach and trainer for an
organization that developed software for the design, construction, and
operation of power plants (including nuclear), processing plants (e.g., oil
refineries, chemicals), and ships. There, he helped grow the organization
to 144 Scrum teams in the US, India, Israel, UK, Germany, France, and
Canada.

Along the way he was trained as an ISO 9001 Auditor and CMM assessor,
was a member of ISO & IEEE Standards Committees for some 15 years,
and was a member of the Scrum Alliance Board of Directors for 2 years.

Currently, he does training and coaching as an ICAgile certified trainer
for Agile fundamentals, coaching, testing, business agility, and leadership
as well as a variety of non-certified scrum master, product owner, man-
ager, and team member courses.

Scott has a basic website at www.agilesoftwarequalities.com and can be
reached at agileswqual@gmail.com.

	_98qyok7qar6c
	_jx4tiiee14c1
	_z146zh3nfiri
	_1phkwuza8ctl
	_ywocn1x3xxqe
	_3pd63b9gowq8
	An Overview
	The Agile Manifesto
	Not just for software
	The next chapter

	Fundamental Considerations
	Communication
	Collaboration
	Commitment
	Continuous improvement
	Trust
	Excellence

	Individuals and Interactions
	Individuals and interactions
	Processes and tools
	Committing to interaction
	An experiment

	Working Software
	Communicating with the software
	Comprehensive Documentation

	Customer Collaboration
	Contract negotiation

	Responding to Change
	Following a plan

	Satisfy the Customer
	Our highest priority
	Early and continuous
	Valuable software

	Welcome Change
	Customer’s competitive advantage
	Welcome changing requirements
	Late in development

	Deliver Frequently
	Deliver working software frequently
	From a couple of weeks to a couple of months
	With a preference to the shorter timescale
	Why the short iterations?

	Working Together
	Business people and developers
	Work together daily
	Throughout the project

	Motivated Individuals
	Motivated individuals
	Environment and support
	Trust them

	Face-to-Face Conversation
	Modes of communication
	Distributed teams
	Dealing with distribution
	Daily meetings
	Iteration reviews

	Working Software… Again?
	Measuring progress
	Burn-up chart
	Definition of done

	Sustainable Development
	Sustainable development
	Constant pace indefinitely

	Technical Excellence
	Continuous attention
	Technical excellence
	Good design
	Enhances agility

	Simplicity
	Self-Organizing Teams
	The best
	Self-organizing teams

	Team Reflection
	Regular intervals
	The team
	Become more effective
	Tune and adjust
	Retrospective “smells”
	Some retrospective ideas
	What next?
	Epilogue

	One older and two recent perspectives
	Further Reading
	About the Author

